This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Nano-sized heterometallic macrocycles based on 4-pyridinylboron-capped iron(II) clathrochelates: syntheses, structures and properties

Ying-Ying Zhang, Yue-Jian Lin and Guo-Xin Jin*

Ir-Fe heterometallic macrocycles from clathrochelate-based bipyridyl and bis(amidinate) ligands with controllable cavity size have been prepared and characterized.

The successful applications of well-defined metal-organic coordination macrocycles and cages in various areas, such as host-guest chemistry, photo- and electrochemical sensing, catalysis and so on, has driven the development to systematic and rational approaches for their preparation. Most of the macrocycles and cages synthesized to date are homometallic based on transition metal ions. The synthesis of multimetallic hybrid materials is of special interest because the incorporation of two or more kinds of metal ions can add different functionalities. However, much attention has been focused on the synthesis of homometallic macrocycles, whereas the chemistry, as well as the synthetic strategy toward discrete heterometallic frameworks, has received much less attention. A useful strategy toward heterometallic macrocycles is to use metallaligands as building blocks via stepwise formation approach. Clathrochelates, cage complexes with an encapsulated metal ion, were first proposed by Busch. Recently, numerous clathrochelate complexes of different types with the encapsulated iron(II), ruthenium(II) and cobalt(I, II and III) ions, which display interesting chemical, physical and physicochemical properties, have been obtained and characterized. One of the main pathways for functionalization of these clathrochelates is to use various substituents in both their ribbed chelate α-dioximate fragments and the apical capping groups. The cage complexes with two apical 4-pyridinyl substituents are linear bipyridyl ligands, which has been widely used as a bridging ditopic N₂N'-ligand for the preparation of countless discrete supramolecules, as well as coordination polymers. In this paper, we choose 4-pyridinylboron-capped iron clathrochelates as metallaligands and bis(amidine) as organic ligands to construct heterometallic macrocycles.

As shown in Scheme 1, [Cp*IrCl₂]₂ was first treated with dilithium salt (formed by the addition of 2 equiv. of BuLi at -78 °C) of the bis(amidine) ligand H₂L₁ in THF at 0 °C to afford the bis(amidine) bridged dinuclear complex [Cp*IrCl₂(L₁)₂] (I), to which 4-pyridinylboron-capped clathrochelates L₁⁻¹/L₁⁻² was added in the presence of 2 equiv. AgOTf at -78 °C. After the mixture was stirred at low temperature for 2 h and kept stirring for additional 6 h at room temperature. Macrocycles [(Cp*Ir)(L₁)₂(L₁⁻¹)][OTf]₄ (3a) and [(Cp*Ir)(L₁)_2(L₁⁻²)][OTf]₄ (3b) were obtained simply by removal of the precipitation. The ¹H NMR spectra for 3a and 3b had similar signals at almost the same chemical shifts except for that of the substituents in the metallaligands, which suggest that the structures of 3a and 3b are similar.

Scheme 1. The syntheses of the heterometallic macrocycles (3a, 3b, 4a and 4b).

The structure of 3a was confirmed by X-ray crystallography at 193 K. As shown in Fig. 1, the cation of complex 3a adopts a slightly distorted rectangular structure based on the [4Ir + 2Fe] nuclear core with a nano-sealed cavity of 18.7 × 10.9 Å, which accommodates several solvent molecules (CH₂Cl₂) and a part of triflate anions. The three coordination sites of the half-sandwich Ir fragment are occupied by pyridyl donor L₁ and chelating group L₁. The coordination geometry of Fe(II) center is intermediate between a trigonal prism (TP, distortion angle φ = 0°) and a trigonal antiprism (TAP, distortion angle φ = 60°). The distortion angle φ values are equal to 22.1, 22.0 and 21.7°, respectively. The heights h of their...
TP-TAP coordination polyhedra are approximately 2.3 Å. The average Ir-N and Fe-N distances (Table S1) are equal to 2.126 and 1.904 Å, which are similar to the observed six-coordinated iridium complexes \(^\text{11}\) and iron(II) clathrochelates, respectively.\(^\text{12}\)

The structure of 4a, which contains four iridium and two iron metal centers, was established by X-ray structure analysis (Fig. 2). The complex cation of 4a is quite similar to that of 3a and has a rectangular cavity with dimensions of 19.1 × 15.2 Å according to Ir…Ir non-bonding distances, which is much larger than that of 3a, as well as the known molecular rectangles.\(^\text{13}\) Two triflate anions and several solvent molecules found as guests are contained in the rectangular framework. A remarkable feature of the structure is that both of the metallaligands and the organic ligands are almost in the normal configuration compared with the twisted ones in complex 3a. The Ir-N and Fe-N distances are in the range of 2.084(15) to 2.198(12) Å and 1.872(13) to 1.936(13) Å (Table S2), respectively, which are close to the values of 3a.

![Molecular structure of 3a](image1.png)

Fig. 1 (a) Molecular structure of 3a. All hydrogen atoms and guest molecules were omitted for clarity. (b) The dimensions of cavity for 3a. (c) Top view of 3a and (d) side view of 3a in space-filling mode. Triflate anions and solvent molecules outside the framework, as well as hydrogen atoms are omitted for clarity. Color code: N, blue; O, red; B, yellow; C, gray; Cl, light green; F, green; S, violet; Fe, orange; Ir, pink.

With the intent of exploring the scope of our synthetic approach and improving the cavity size of the rectangles, xenyl-linked bis(amidine) ligand H\(_2\)L\(_2\) was introduced to these reactions. Complexes \(\left(\text{Cp}^*\text{IrCl}_2(L_2)\right)(\text{L}^{\text{Ir}2}_\text{Cl})[\text{OTf}]_4\) (4a) and \(\left(\text{Cp}^*\text{IrCl}_2(L_2)_\text{Cl}\right)(\text{L}^{\text{Fe}2}_\text{Cl})[\text{OTf}]_4\) (4b) were obtained by treatment of \(\left[\text{Cp}^*\text{IrCl}_2(L_2)\right]\) (2) with iron(II) clathrochelates \(\text{L}^{\text{Ir}2}/\text{L}^{\text{Fe}2}\) used the previously conditions in 88% and 85% yields, respectively.

![Molecular structure of 4a](image2.png)

Fig. 2 (a) Molecular structure of 4a. All hydrogen atoms and guest molecules were omitted for clarity. (b) The dimensions of cavity for 4a. (c) Top view of 4a and (d) side view of 4a in space-filling mode. Triflate anions and solvent molecules outside the framework, as well as hydrogen atoms are omitted for clarity.

We attempted to use the reported synthetic methodology\(^\text{4}\) to obtain the same metallarectangles, but the crude products are complicate and difficult to purify so that only the heterometallic dinuclear complexes were obtained. A stoichiometric (1:1) mixture of \(\left[\text{Cp}^*\text{IrCl}_2\right]\) and the corresponding clathrochelate-based bipyridyl ligands \(\text{L}^{\text{Fe}2}/\text{L}^{\text{Ir}2}\) in CH\(_2\)Cl\(_2\) at room temperature gave the dinuclear complexes 5a and 5b in almost quantitative yields (Scheme 2). The \(^1\)H NMR spectra of 5a and 5b display a similar signal pattern of the Cp* protons and pyridyl protons (H\(_6\) and H\(_7\)). However, with respect to the macrocycles above, in 5a and 5b, the H\(_8\) signal is shifted to higher frequencies (\(\delta = 8.85\) ppm for 5a and 8.88 ppm for 5b), whereas both of the Cp* signal and H\(_8\) signal are shifted to lower frequencies (\(\delta = 1.56, 7.57\) ppm for 5a and 1.57, 7.58 ppm for 5b) (Fig. S1).

![Formation of complexes 5a and 5b](image3.png)

Scheme 2 Formation of complexes 5a and 5b.

![Molecular structures of complex 5a and 5b](image4.png)

Fig. 3 Molecular structures of complex 5a (a) and 5b (b). All hydrogen atoms and guest molecules were omitted for clarity. Color code: N, blue; O, red; B, yellow; C, gray; Cl, light green; Fe, orange; Ir, pink.

X-ray analysis indicated that all of the Cp*Ir fragments in complexes 5a and 5b are coordinated to two chlorine atoms and one nitrogen atom from the pyridine ligand. Despite the fact that these two complexes in some respects are alike, the details of their crystal structures are significantly different. Obviously, the Cp* groups in 5a are positioned trans to each other while neither trans nor cis in 5b.

The UV-vis spectra of the complexes containing 4-pyridinylboron-capped iron(II) clathrochelates obtained contain one metal-to-ligand Fed \(\rightarrow\) Lx* charge transfer (MLCT) band in the visible region with maxima at about 450 nm (Fig. S2), which is characteristic of the macrobicyclic iron(II) tris-dioximates.

Meanwhile, the bands of the intraligand π-π* transitions are observed in the UV region from 227 to 283 nm.

The electrochemical characteristics of the dichloromethane solutions of the heterometallic complexes obtained were studied by cyclic voltammetry (CV) using a glassy carbon (GC) working electrode. All of the CVs have similar shapes and exhibit one redox pair and one oxidation wave in the potential range from -1.5 to +1.7 V (Fig. S3 and Table S3). The CVs for all of the complexes in their cathodic ranges contain only one peak of the oxidation, which is apparently irreversible and may correspond to the one-electron process of Fe^{2+}/^{3+}. However, the anodic ranges of these CVs contain quasi-reversible one-electron waves assigned to the Fe^{2+}/^{3+} oxidations. The ΔE values for complexes 5a and 5b are higher than those of the macrocycles (3a, 3b, 4a and 4b) (170-230 mV), which might be because of the slight effect of the electron-withdrawing chloride ions.

Conclusions

In summary, we have reported a series of iridium(III)-iron(II) heterometallic complexes with clathrochelate-based bipyridyl and bis(amidine) ligands. Single-crystal X-ray diffraction indicated that they have rectangular structures with different nano-sized cavities, in which some small molecules and anions were found, such as dichloromethane molecules, triflate anions, and so on. The cyclic voltammograms exhibit one redox pair and one oxidation wave. Our results further confirmed that 4-pyridinylboron-capped iron(II) clathrochelates can be used as building blocks to construct the nano-sized multicentered hybrid systems.

This work was supported by the National Science Foundation of China (91122017, 21374019), the Shanghai Science and Technology Committee (13JC1400600, 13ZZZ2275200) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1117).

Notes and references

Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China; Fax: +86-21-65641740; Tel: +86-21-65643776; E-mail: gxin@fudan.edu.cn
† Electronic supplementary information (ESI) available: Experimental details, UV-Vis spectra, cyclic voltammogram curves and other materials. CCDC 973498 (3a), CCDC 973499 (4a), CCDC 973500 (5a), and CCDC 973501 (5b). For ESI and crystallographic data in CIF or other materials see DOI: 10.1039/c000000x/.

A series of nano-scaled Ir-Fe heterometallic rectangles were prepared from 4-pyridinylboron-capped iron(II) clathrochelates and bis(amidine) ligands. The cavity size could be controlled easily by the length of the organic ligand.