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The monohydrate form of the neurotransmitter γ-amino 
butyric acid (GABA) has been crystallised in the 0.4-0.8 GPa 
pressure range, recovered to ambient pressure and then used 
as a seed. Theoretical calculations indicate that this hydrate is 
only thermodynamically favoured over the two anhydrous 
forms at high pressures. 

§Celebrating 300 years of Chemistry at Edinburgh 
 
γ-Amino butyric acid (GABA) is a non-standard gamma-amino 
acid and the main inhibitory neurotransmitter in the central 
nervous system.1 GABAergic drugs have sedative and anti-
convulsive effects; they are employed for the treatment of 
neurological disorders such as epilepsy, anxiety and Parkinson's 
disease.2-4  
 GABA exists as a neutral molecule exhibiting extensive con-
formational flexibility in the gas phase5 and can exist as a 
zwitterion (Fig. 1) or a cation in solution and the solid state. Two 
anhydrous polymorphs containing the zwitterionic form have 
been reported for GABA: a stable monoclinic6 and a metastable 
tetragonal polymorph,7,8 both of which have been crystallised 
from aqueous solutions. Whilst a hydrate structure of GABA had 
never been observed, GABA zwitterions have been suggested to 
form stable clusters with water (GABA.2H2O and GABA.5H2O) 
in solution.9  
 Intrigued by the fact that GABA forms stable clusters with 
water in aqueous solutions and yet by the absence of GABA 
hydrates in the solid state, we set out to investigate which solid 
forms would result from in situ high-pressure crystallisation 
experiments of aqueous GABA solutions. Previous studies of 
small organic compounds indicate that under these conditions 
water tends to be included into their crystal structures. This has 
been shown for several small organic molecules10-12 including the 
pharmaceuticals paracetamol,13 piracetam,14 ciprofloxacin,15 and 
the GABA analogue gabapentin.16

 A GABA monohydrate was reproducibly obtained by in situ 
high-pressure crystallisation and crystal growth in a diamond-
anvil cell (DAC) of the Ahsbahs type17 (Fig. 2) from a variety of 
aqueous solutions in the 0.4 - 0.8 GPa pressure range.‡ The high-
pressure structure was elucidated by single-crystal X-ray 
diffraction (SXRD) at the ANKA synchrotron.‡

 Recovery of GABA monohydrate to ambient pressure 
proceeded in a straightforward manner and at ambient-
temperature conditions (Fig. 2); the DAC was rapidly opened to 

prevent extensive dissolution and the crystal immersed in 
mounting oil. Subsequent to recovery, SXRD data were collected 
at 150 K on our home diffractometer, confirming that no phase 
transition had taken place.‡ High-pressure crystallisation of 
GABA monohydrate was repeated several times, always yielding 
the monohydrate and all crystals were easily recovered. 
Recovered crystals were then used to seed saturated aqueous 
solutions of GABA at ambient conditions, as confirmed by 
SXRD. Although no extensive crystallisation screening was 
conducted, we were only able to obtain the monohydrate form 
with the help of hydrate seeds obtained from the high-pressure 
crystallisations. In the absence of these seeds, all our 
crystallisations at ambient conditions yielded anhydrous 
monoclinic GABA.  
 

α

β

γ

 
Fig. 1 Chemical diagram of the GABA zwitterion with carbon backbone 65 

naming. 

 

 
Fig. 2 Optical images of GABA monohydrate a) at 0.48 GPa in the DAC 
and b&c) recovered to ambient temperature and rotated on its side by 90°. 70 
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Fig. 3 2-D layered structure of GABA monohydrate viewed along the b-

axis. H-bonds are depicted as dotted lines. 

 A representation of the crystal structure of the GABA 
monohydrate is given in Fig. 3. GABA displays a folded 
conformation most similar to the one observed in the tetragonal 
polymorph (Table S3, ESI
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†). Using graph-set notation,18 the main 
building block of the crystal structure can be described as being 
composed of centrosymmetric R2

2(14)-GABA dimers which are 
linked by antiparallel H-bonded and double-stranded C(7) chains 
running along the b-axis (Fig. 3 and S1, ESI†). Each strand is 
strengthened by accepting two H-bonds from a water molecule, 
which in turn links double strands related by glide symmetry. The 
resulting 2-D H-bonded layered structure propagates along the c-
axis (Fig. 3). 
 PIXEL calculations19 indicate that the strongest dimer 
interaction in the crystal structure is associated with the GABA 
centrosymmetric H-bonded dimer (-389.3 kJ/mol). Whilst all 
interaction energies between molecular pairs linked by H-
bonding are strong and stabilising, four other non H-bonded 
molecular pairs rank amongst the six energetically most 
significant interactions because of their favourable dipolar 
arrangements (-114.7 - -72.6 kJ/mol). These interactions are 
characterised by a significant Coloumbic energy contribution to 
the total interaction energy and a very small repulsive term (Table 
S4 and Fig. S3, ESI†). 
 Periodic DFT calculations (PBE)20 with the Grimme van der 
Waals corrections21 were performed in order to calculate the 
enthalpy of hydration of GABA, ΔHhyd, as a function of pressure 
(Fig. 4).† At 0 K, ΔHhyd is defined as the difference between the 
enthalpy of the GABA hydrate minus the sum of the enthalpies of 
the most stable GABA and ice polymorphs at a given pressure. A 
negative ΔHhyd indicates that the hydrate structure is more stable 
than the anhydrous form plus ice at a given set of conditions. 
Whilst recent ambient-pressure calculations have shown that 
cocrystal, solvate and hydrate formation are indeed driven by 
thermodynamics,22,23 to the best of our knowledge this is the first 
time that such calculations have been performed under a pressure 
range. 
 The change of the enthalpy of hydration with pressure is 
depicted in Fig. 4. At ambient pressures, close to 0 GPa, there is 
no driving force for hydrate formation (ΔHhyd = ~0 kJ/mol). The 
enthalpy of the hydrate is equal to that of ice XI and the stable 
monoclinic GABA polymorph at 0 K. As the pressure is 
increased, however, the hydration enthalpy becomes increasingly 
more negative, up to -9 kJ/mol at 0.8 GPa. Average 

cocrystallisation energies lie around -11 kJ/mol according to a 
recent study with a similar computational model.24 Our 
theoretical calculations nicely corroborate the experimental 
observations: GABA monohydrate is obtained at pressures 
between 0.4-0.8 GPa, for which the ΔHhyd lies between -5 up to -
9 kJ/mol, and the monohydrate can be recovered to ambient 
pressures because it is energetically close to monoclinic GABA 
plus ice XI at those conditions (ΔHhyd = ~0 kJ/mol). Although 
there is no driving force for hydrate formation at ambient 
conditions, if seeds of the hydrate are present in solution, growth 
of the hydrate occurs because the hydrate is energetically close to 
anhydrous GABA plus ice. 

 
Fig. 4 Calculated hydration enthalpy of GABA as a function of pressure. 60 
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 But, what is the reason for the GABA hydrate becoming more 
stable than the anhydrous form plus ice at higher pressures? As 
the pressure is increased, the enthalpies of all the involved forms 
become less stabilising because molecules are forced closer 
together and repulsions become more important (Fig. S6, ESI†). 
We noticed that compressing water within ice costs relatively 
more enthalpy than compressing water within the GABA 
monohydrate structure. Compression of a water molecule in ice 
from 0 to 0.8 GPa occurs at a structural cost of shortening 4 H-
bonds by 0.035 Å each and an enthalpic cost of 14 kJ/mol. In 
contrast, compression of water within the GABA hydrate from 0 
to 0.8 GPa occurs at a structural cost of shortening 3 H-bonds by 
an average of 0.019 Å each and an estimated enthalpic cost of 5 
kJ/mol. Hence, this indicates that because of the poorer 
compressibility of water within ice,25 hydration of GABA 
becomes thermodynamically favoured at higher pressures. This is 
likely to be the case for many other pharmaceuticals; in fact, 
high-pressure crystallisations are known to produce hydrates 
otherwise unseen under ambient conditions.10-16 Whether those 
hydrates can be recoverable to ambient pressures and be used as 
seeds may be indeed anticipated with the calculations presented 
herein.   
 The phenomenon of hydrate formation has long been the 
subject of intensive research from both the academic and 
industrial communities. Approximately one third of organic 
molecules in the Cambridge Structural Database,26 and a similar 
percentage of pharmaceuticals,27 crystallise as hydrates. Hydrates 
actually "form an integral part of many pharmaceutical dosage 
forms".27,28 Whether an opportunity or a nuisance, the study of 
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hydrate formation in the pharmaceutical industry is a necessity. In 
our study we have illustrated the benefits of performing 
crystallisation experiments under high-pressure conditions 
followed by the recovery of forms to ambient conditions for their 
use as seeds. Following that procedure, we were able to 
consistently produce a hydrate, otherwise elusive, at ambient 
conditions. Whether original seeds come from other isomorphic 
materials
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29 or from crystallisations at high-pressure conditions as 
shown herein, the seeding techniques can promote the realisation 
of otherwise unobservable forms under ambient conditions. 
Whilst a particular form may not find industrial applications, our 
study demonstrates how knowledge of the structural landscape of 
a compound can be extended, potentially providing useful 
information for devising improved manufacturing strategies and 
for patent protection. 
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