This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cobalt Corrole Catalyzed Hydrogen Evolution Reaction: Surprising Electronic Effects and Characterization of Key Reaction Intermediates

Atif Mahammed, a Biswajit Mondal, b Atanu Rana, b Abhishek Dey* b and Zeev Gross* a

A surprising effect of halide substituents on reduction potentials and catalytic activity of halogenated cobalt corroles has been deduced by experimental and computational methods; and the proton-activating cobalt(I) and the cobalt(II) corrole that is formed in the step during which hydrogen is formed were characterized by NMR spectroscopy.

Facile electrochemical reduction of protons to hydrogen is a major goal within the contemporary science devoted for the development of alternative energy sources. The progress is slow on most electrodes, except of expensive and rare noble metals (mainly Pt). The combination of standard and cheap electrode material with coordination complexes that are able to catalyze the reaction at reasonable potentials has hence become an extensively investigated alternative. We have contributed to this research area by introducing Co-F₂ (Scheme 1); immobilized on a graphite electrode it catalyzed the hydrogen evolution reaction (HER) very efficiently, even from water obtained from local sources without requiring pre-treatment and also under aerobic conditions.

Disadvantages of Co-F₂ are the very expensive 3,4-difluoropyrrole, from which the corresponding corrole is prepared in quite low yields. This encouraged us to investigate the full series of β-pyrrrole halogenated Co corroles (Co-Xₘ, X = H, Cl, Br, F) for a systematic investigation on their utility as catalysts for HER. The comparison between the various complexes revealed surprising trends in redox potentials and catalytic activity, whose origin was addressed by experimental and computational investigations. We also report the spectroscopic characterization of key intermediates involved in the reduction of protons to hydrogen.

Cyclic voltammetry (CV, Fig. 1) was used for deducing the effect of halogenation on the redox potentials of the bis-pyridine coordinated Co-Xₘ complexes. Consistent with previous knowledge, the first reduction process was irreversible due to the increased lability of axial ligands upon the transformation from inert cobalt(III) to labile cobalt(II). The pyridine ligands in the Co-Xₘ complexes could also be removed by pre-treatment with trifluoroacetic acid (TFA), upon which the first reduction became reversible (Fig. 1b). The second and more important reduction progresses were reversible even in the absence of TFA, revealing that all halogenated complexes were reduced at up to 600 mV less negative potentials than Co-H₂. However, the anticipated trend of Co-F₂ > Co-Cl₂ > Co-Br₂ regarding reduction facility was not fulfilled: the first reduction potentials were practically identical (0.36 V) and the E₁/₂ values for the second reduction were -1.39, -0.80, -0.78 and -0.97 V vs. Ag/AgCl for X = H, Cl, Br and F, respectively. Most surprising was that 2-electrons reduction of Co-F₂ occurs at a significantly more negative potential than that of Co-Br₂ and Co-Cl₂. To address this puzzle, the series of analogous gallium corroles (Ga-Xₘ, where X = H, Cl, Br, or F) was prepared. The motivation was to check if the phenomenon is unique to cobalt or if it occurs even for post-transition metalcorroles wherein redox processes are limited to the corrole macromolecule.

Ga-H₈ and Ga-Br₈ were prepared according to published procedures, while Ga-F₈ was synthesized by reaction of the fully β-pyrrrole fluorinated tris-pentafluorophenylcorrole with gallium chloride in pyridine under reflux, and Ga-Cl₈ was accessed via direct chlorination of Ga-H₈ (see ESI†). Both Cl₂ and N-chlorosuccinimid (NCS) were examined, in various solvents and at different temperatures, for identifying optimal conditions that would lead to full chlorination of all β-pyrrrole positions. The best results were obtained by reacting Ga-H₈ with NCS in ortho-dichlorobenzene at 150 °C for 30 min, followed by solvent evaporation and uptake of the solid material in benzene. Green solutions of Ga-Cl₈ were obtained upon treatment of the initially yellow reaction mixture with NaBH₄, whose role was to reduce the oxidized macrocycle that was initially formed. The CV’s of the Ga-Xₘ complexes revealed almost identical reduction potentials (-0.86 V) for Ga-Cl₈ and Ga-Br₈, which are not only about 600 mV more positive relative to Ga-H₈, but also about 200

<Diagram of chemical structures of the cobalt(III) and gallium(III) corroles>
mV more positive than that of Ga-F$_8$ (Fig. S1, ESI†). As this trend is identical to that observed for the second reduction potential of the analogous cobalt complexes, this result might suggest that the reduction of the cobalt(II) corroles is corrole- and not metal-centred.

Further insight in how β-pyrrole halogenation affects the electrochemistry of the cobalt complexes was obtained from geometry optimized DFT calculations of the 1-e-reduced Co-X$_8$ complexes (Fig. S2, ESI†). The calculated ground state wave functions revealed low-spin Co(II) states with the d$_{x^2}$ orbital as the SOMO, consistent with previously reported evidence from EPR spectroscopy. The comparison between [Co-F$_8$]$^-$ and [Co-Cl$_8$]$^-$ disclosed that the SOMO of the former complex is 0.137 eV higher in energy, which implies that further reduction of [Co-F$_8$]$^-$ (i.e., the addition of another electron into d$_{x^2}$) should be less energetically favored than for [Co-Cl$_8$]$^-$. This finding is perfectly consistent with the 170 mV more negative second reduction potential of Co-F$_8$. The comparison of the DFT calculations on Co-F$_8$ and Co-Cl$_8$ also revealed why the halide substitution effect displays the same trend for reduction of the corrole (as in Ga-X$_8$) and the metal (as in [Co-X$_8$]$^-$. Both the metal’s SOMO and the corrole’s LUMO (π*) are much higher in energy for the F$_8$ complex. The stronger electron-withdrawing effect of F vs. Cl is apparently more than offset by the more effective π-donation of fluoride into the macrocycle’s π system and through it to the metal as well. Accordingly, addition of one electron to both the π* (as for Ga-X$_8$) and to the d$_{x^2}$ orbital of cobalt(II) (as for [Co-X$_8$]$^-$. occurs at more negative potentials for X = F.

Armed with the above insights, the full series of β-pyrrole-halogenated cobalt corroles was examined as catalysts for HER, with focus on kinetic reactivity (i_{cat}/i_{th}) and onset potentials. The addition of TFA to homogenous acetonitrile solutions induced catalytic waves, which for low TFA concentrations (e.g., 2-4 mM TFA, Fig. 2a-c) were observed at potentials near to the Co$^{II/III}$ couple of the Co-X$_8$ complexes. The onset potentials were -0.4, -0.55, and -0.6 V for Co-Br$_8$, Co-Cl$_8$, and Co-F$_8$, respectively. The catalytic waves increased in amplitude in response to larger applied acid concentration (e.g., 10 mM TFA), and for Co-Cl$_8$ and Co-Br$_8$, but not Co-F$_8$, progressively shifted to more negative potentials. Ultimately, the maxima of the two first mentioned complexes were actually positioned at more negative potentials (-1.33 and -1.23 V for Co-Cl$_8$ and Co-Br$_8$, respectively) than for Co-F$_8$ (-1.13 V). Various TFA concentrations were applied for comparing the catalytic activity of the halogenated cobalt corrole in terms of onset potentials and kinetic reactivity (Fig. 2d,e). The conclusions from these results were that: a) the most reactive catalyst is Co-F$_8$, followed by Co-Cl$_8$ and the least reactive Co-Br$_8$; and b) that the onset potential is earliest for Co-Br$_8$, followed by Co-Cl$_8$ and Co-F$_8$ (similar results obtained also under heterogeneous conditions, see Fig. S4−S6, ESI†). The trend in onset potential is opposite to intuition, but fully consistent with that observed for the redox potentials and the computational results. Taken together, all the results point toward cobalt(I) corrole as the proton-reducing reaction intermediate.

Fig. 1 Cyclic voltammogram traces of the Co-X$_8$ complexes in acetonitrile solutions with 0.1 M TBAP as electrolyte, under a N$_2$ atmosphere, without (a) and in the presence of 0.13 M TFA (b). Scan rate: 100 mV/s; glassy carbon working electrode.

Fig. 2 Cyclic voltammograms of 1 mM (a) Co-F$_8$, (b) Co-Cl$_8$, and (c) Co-Br$_8$ in acetonitrile solutions containing 0.1 M TBAP in the presence of 0, 4, and 10 mM TFA. (d) Cyclic voltammograms of Co-F$_8$ in the presence of 0, 2, 4, 6, 8 and 10 mM TFA. (e) Dependence of $i_{\text{cat}}/i_{\text{th}}$ for Co-F$_8$, Co-Cl$_8$, and Co-Br$_8$ on the concentration of TFA in acetonitrile. Scan rate: 100 mV/s; glassy carbon working electrode.

Spectroscopic characterizations of Co-Cl$_8$ in the various oxidation and coordination states that are relevant to HER were performed for gaining additional insight into the multistep and potentially multiple pathways involved in the overall process. The 13C NMR spectrum of the C$_6$ symmetry 6-coordinate Co(III) complex (Fig. 3a) displayed two kinds of C$_6$F$_5$ rings in a 2:1 ratio, each of which with only one type of ortho-F resonances. Its 1H NMR spectrum (Fig. S10, ESI†) disclosed the high field shifted resonances (at 1.22, 5.40, and 6.36 ppm) of the coordinated pyridine molecules that complete the coordination sphere. The suspected proton-reducing reaction intermediate [Co-X$_8$]$^{2-}$ was prepared by adding 2 equiv amount of Co(Cp*)$_2$ to a THF-d$_8$ solution of Co-Cl$_8$ under a N$_2$ atmosphere. The 19F NMR spectrum, recorded after the solution color changed from green to red, was characterized by very narrow resonances (Fig. 3b). This implies the formation of a diamagnetic complex, consistent with d8 Co0 in a square planar geometry. The 2:1 ratio of both the ortho-F and meta-F resonances were also supportive of that conclusion, consistent with the DFT calculations that point towards metal-centred reduction. The low affinity of [Co-X$_8$]$^{2-}$ to axial ligands, already deduced from the earlier described electrochemical results, is also reflected in the 1H NMR spectrum of the reaction mixture that displayed only resonances of non-coordinated pyridine (Fig. S11, ESI†). The subsequent addition of TFA to [Co-Cl$_8$]$^{2-}$ induced a color change from red to brown and
the thus resulting 19F NMR spectrum (Fig. 3c) displayed paramagnetic shifts and broadening of all resonances. A practically identical NMR spectrum was obtained via reduction of Co-Cl₈ by excess NaBH₄, which points towards the formation of [Co-Cl₈]¹⁻ in both cases. Supporting evidence for the Co(II) oxidation state in [Co-Cl₈] was obtained by comparing its UV-vis and EPR spectra (Fig. S12, ESI¹) with previous reports.⁹,¹²

![Scheme 2](image)

Scheme 2 Mechanism for H₂ evolution catalyzed cobalt corroles. The represents cycles and √ symbolises (corrole) and the fully identified complexes, respectively.

Hydride could not be identified in the 1H NMR spectrum of the reaction product.

Examination of the CoX₈ series revealed a surprising effect of halide substituents on reduction potentials and catalytic activity regarding HER. DFT calculations revealed π-donation by F into the corrole system and through it to the metal center as the dominant factor of both phenomena. Two important reaction intermediates were characterized by NMR spectroscopy, the proton-activating cobalt(I) complexes and the product resulting from the step during which hydrogen is formed. The bimolecular reaction between the putative cobalt(III) hydrides is apparently dominant⁴,¹³ at the conditions used for spectroscopic characterizations, albeit the alternative pathway could not be ruled out. The improved insight into the reaction details is an important asset for the design of even more effective cobalt-based catalysts for HER.

The research was supported by GTEP-RBNI Nevet grant (ZG) and BRNS grant 2011/36/12-BRNS (AD).

Notes and references

¹Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel; E-mail: chr10zg@tx.technion.ac.il
²Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India; E-mail: icad@iacs.res.in
†Electronic Supplementary Information (ESI) available: Detailed experimental procedures and data. See DOI: 10.1039/b000000x/

11 Note that treatment with TFA induces protonation of pyridine and the formation of a paramagnetic 4-coordinate Co(III) complex (ref. 6b).
13 The DFT-calculated free energy of reaction for the bimolecular coupling of Co(III) hydrides is -20.89 kcal/mol and for the protonation of Co(III)-H it is -7.67 kcal/mol.