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Fourier transform mid-infrared photoacousitc spectroscopy (FTIR-PAS) was employed to determine the 

contents of magnesium and potassium in rapeseeds. A total of 180 samples were collected for this 

purpose. A Savitzky-Golay filter was used for the spectral pretreatment. The whole sample set was 

divided into calibration and prediction sets composed of 135 and 45 samples, respectively. To build 10 

calibration models, partial least squares (PLS), least squares support vector machine (LS-SVM) and least 

squares support vector machine combined with uninformative variable elimination (UVE-LS-SVM) were 

used. The best results for quantification of magnesium and potassium, were both achieved by UVE-LS-

SVM models compared to the PLS models. The highest values of RPD (ratio of percentage deviation) 

were 2.5 and 2.25 for the prediction of magnesium and potassium, respectively.  This work verified the 15 

good promise of FTIR-PAS combined with LS-SVM to quantify mineral nutrients of rapeseeds.  

 

1.  Introduction1 

Rapeseed (Brassica napus L.) is regarded among most important 

oilseed crops1,2 since it supplies edible oil for human 20 

consumption or industrial applications, and feed protein for 

livestock. In addition, mineral components of rapeseeds are also 

important quality indicators deserving attention. Magnesium is an 

essential element for plant growth3 and also represents an 

important nutrient in human and animal diet4, 5. Potassium is a 25 

kind of indispensable nutrient for crops and potassium levels in 

seeds directly relate to the potassium fertilizer application. Fast 

and accurate determination of magnesium and potassium in 

rapeseeds carries significant implication for both quality 

improvement in rapeseed breeding programs and fertilizer 30 

recommendation during field production.  

Traditional methods to determine magnesium and potassium in 

rapeseeds usually include EDTA coordination titration for 

magnesium6 and flame photometry for potassium7. Besides, 

inductively coupled plasma atomic emission spectroscopy (ICP-35 

AES), is also often used for the determination of magnesium and 

potassium8,9. However, all of these methods necessitate the 

sample pretreatment, that is, seed grinding, concentrated acid 

digestion or dry ashing. The process is time-consuming, 

laborious, expensive and even dangerous. Also, these methods 40 
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are destructive.  One measurement causes the loss of several 

grams of rapeseeds. Therefore, these methods fail to satisfy the 

need of fast characterization of rapeseed nutrient information, and 

are particularly unsuitable for variety selection of rapeseeds with 

small sample size.  45 

Near/mid infrared spectroscopy including reflectance and 

transmission modes has been widely applied as a powerful 

alternative for qualitative and quantitative analysis in agriculture 

and food industry, due to its rapidity, favorable economics, 

simplicity of sample pretreatment and absence of chemicals10-13. 50 

Recently, another unique sampling technique called Fourier 

transform infrared photoacoustic spectroscopy (FTIR-PAS) is 

gaining momentum14. FTIR-PAS requires no sample pretreatment, 

just tiny amounts of samples (approximately 100 mg for one 

scanning), and can analyze nearly any type of sample in a rapid 55 

way. To date, PAS technique has found success as a potent tool to 

quantify property parameters of analytes including drugs15, 

woods16, pulps17, 18, soils19, 20. Thorough elaboration of the 

principles and applications of PAS technique is reviewed by 

Haisch21. At present, however, no reports of applications of 60 

FTIR-PAS to analysis of rapeseed components are found.   

Most of published work shows that infrared spectroscopy can 

successfully quantify organic components in agricultural products. 

However, the ability of this technology to determine mineral 

contents has always been under dispute because most minerals 65 

don’t produce infrared absorption. Nevertheless, many studies22-25 

have shown that infrared spectroscopy can be used to determine 

some minerals including potassium and magnesium. It is 

explainable in that those minerals in plant materials form 

complexes with certain organic molecules, and it is by measuring 70 

these complexes that minerals are indirectly measured by infrared 

spectroscopy. However, these complexes might not to be static 

and varied among plant species. Further study is needed to 

investigate the applicability of infrared spectroscopy for 

quantification of minerals in rapeseeds. 75 
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The major objective of our study was to evaluate the potential 

of FTIR-PAS to determine magnesium and potassium in 

rapeseeds. To build calibration equations, we employed three 

calibration methods: partial least squares (PLS), least squares 

support vector machines (LS-SVM) and least squares support 5 

vector machines combined with uninformative variable 

elimination (UVE-LS-SVM). 

2. Brief descriptions of chemometric methods 

2.1. PLS 

Partial least squares (PLS) is most widely used as a multivariate 10 

calibration method owing to its capacity of utilizing spectral 

information of the component of interest to ensure a robust 

result26. PLS latent variables are extracted by taking into 

consideration sample spectral matrix and concentration matrix 

simultaneously. By doing this, the variation of the spectral matrix, 15 

and the correlation between latent variables and concentration 

matrix, are both maximized. In PLS modeling, the number of 

latent variables is decided based on minimal root-mean-square 

error of cross validation (RMSECV). However, classic PLS just 

handle linear regression problems. The detailed information about 20 

PLS algorithm is well elaborated by Gelahi and Kowalski27. 

 

2.2. LS-SVM 

Recently, least squares support vector machine (LS-SVM) 28-29 

was introduced into the chemometric community to deal with 25 

linear and nonlinear problems. It employs a set of linear 

equations rather than the quadratic programming used in the 

original support vector machine (SVM)30 to obtain support 

vectors, simplifying computational procedures of SVM. The 

powerfulness of LS-SVM in infrared spectral analysis has been 30 

verified by many studies31-34.  

In LS-SVM modeling, the selection of kernel function and its 

corresponding kernel parameters plays a vital role. Radical basis 

function (RBF) is extensively used for nonlinear problems, and 

can reduce the computational complexity of the training 35 

procedures and obtain a good result under general smoothness 

assumptions29. For RBF, two parameters, γ and 2
σ need to be a 

priori tuned. γ is a regulation constant which affects the 

generalization performance of LS-SVM models. 2
σ is the width 

of the RBF which influences the regression errors and the number 40 

of initial eigenvectors.  

 
2.3. UVE 

To improve and simplify calibration models, spectral variable 

selection is often performed. Uninformative variable elimination 45 

(UVE) has been verified as a powerful tool to remove 

uninformative variables and improve calibration models35, 36. For 

UVE, variables which don’t contain more information than 

random variables are defined as uninformative variables and then 

removed. This removal is achieved based on the comparison 50 

between reliability values of spectral variables and random 

variables. The main principle of UVE algorithm can be 

synopsized as follows. 

First, spectral variables are artificially added with the same size 

of random variables. Then, every variable can derive a reliability 55 

value through certain calculation. The maximal absolute value of 

reliabilities of random variables is set as the cut-off value for 

variable selection. Finally, those spectral variables whose 

absolute reliability values are lower than the cut-off value are 

deemed informative. UVE-α is a variant of original UVE. In 60 

UVE-α, the cut-off value corresponds to α, e.g., 99%, the quantile 

of ranked reliability values of artificial variables. This 

modification makes original UVE more conservative and can 

reduce the risk of rejecting some informative variables.  

3. Experimental 65 

3.1. Rapeseed samples 

A total of 180 rapeseed samples were provided by Oil Crops 

Research Institute of the Chinese Academy of Agricultural 

Sciences. They were harvested from a field experiment in the 

Yingtan Ecology Experimental Station. Each sample represented 70 

one variety of rapeseeds. Before spectral scanning, all samples 

were air-dried to make moisture content equivalent among 

samples, and then stored in plastic bags at room temperature. 

 
3.2. Spectral measurements 75 

All rapeseed samples were first subjected to spectral scanning 

and then to chemical determination procedures. Photoacoustic 

spectra were recorded for all samples using a Fourier transform 

infrared spectrometer (Nicolet 6700, USA) equipped with a 

photoacoustic cell (Model 300, MTEC, USA). After placing the 80 

sample (about 100 mg) in the cell holding cup (diameter 5 mm, 

height 3 mm) and purging the cell with dry helium (10 ml min-1) 

for 10 s to ensure a CO2 and H2O free environment, the scans 

were conducted in the mid-infrared wavenumber range of 500-

4000 cm-1 with a resolution of 4 cm-1 and a mirror velocity of 85 

0.32 cm/s. 32 successive scans were recorded, and the average for 

each sample was used in the subsequent analysis. In order to 

eliminate spectral features due to the infrared source, optics and 

PAS detector response, the obtained PAS spectra were 

normalized by dividing the sample spectrum by the spectrum of a 90 

carbon black reference sample under the same experimental 

conditions.  

 

3.3. Reference methods 

Individual rapeseeds were weighted on a lab balance (Sartorius 95 

BS210S, Germany) with a readability of 0.0001 g, and then were 

digested with concentrated sulfuric acid and hydrogen peroxide in 

the digestion instrument (LabTech EHD36, USA). Individual 

sample of digested solution was properly diluted before the 

determination with ICP-AES (Thermo element IRIS Advantage, 100 

USA). The analytical lines of magnesium and potassium were 

285.2 nm and 766.4 nm, respectively.  

 

3.4. Data analysis and software 

The normalized spectra were pre-processed using a smoothing 105 

filter of Savitzky-Golay37 with 21-point window and a 

polynomial of order 1. The second derivative of Savitzky-Golay 

with the same parameters was used to assist in the spectral band 

assignment. The smoothed spectral matrix was divided into 

calibration and prediction subsets of 135 and 45 samples, 110 

respectively, according to a recent sample partitioning method 

called SPXY38. SPXY is an extended version of Kennard-Stone 

algorithm39 by encompassing both X and Y differences in the 

calculation of inter-sample distances.  

Calibration models were subsequently established using PLS, 115 

LS-SVM and UVE-LS-SVM algorithms. In our study, the 

number of latent variables of PLS model was decided based on 

minimal RMSECV through a leave-one-out cross validation 

procedure. In LS-LVM modeling, RBF was selected as the kernel 

function. Its two kernel parameters were optimized using a two 120 
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dimensional grid search method. The optimal combination was 

decided based on the minimum RMSECV through a leave-five-

out cross validation. For UVE algorithm, UVE-99% was employed. 

Spectral preprocessing was implemented by The Unscrambler 

v 9.8 (CAMO Software AS, Norway). Dataset partition and 5 

modeling procedures were realized in Matlab R2011b (The Math 

Works, Natick, USA). Two Matlab toolboxes, PLS_Toolbox 4.2 

(Eigenvector Technology, USA), and LS-SVM toolbox 1.8 (LS-

SVMlab, Leuven, Belgium) were utilized for modeling. 

 10 

3.5. Model evaluation standard 
 
For calibration set data, calibration models were compared using 

the root-mean-square error of calibration (RMSEC) and the 

coefficient of determination r
2 

cal in the process of five-fold cross 15 

validation; For validation set data, the root-mean-square error of 

prediction (RMSEP) and r
2 

pre  were used to evaluate the 

performance of calibration in the prediction process40.  

Besides, the ratio of percentage deviation (RPD) defined by 

Williams in 198741 as the ratio of standard deviation (SD) of 20 

reference values in prediction set to the root-mean-square error of 

prediction (RMSEP), was used as an integrated criterion for 

evaluating the predictive ability of calibration models. According 

to Williams, RPD should be at least 3 for quality control of 

agricultural products. As suggested by Viscarra Rossel42, 25 

calibration models will suffice for good quantitative prediction if 

RPD was larger than 2, and the lowest line of RPD for 

quantitative application was 1.8. In general, RPD should be as 

high as possible for a good model.   

4. Results and discussion 30 

4.1. Reference values  

The statistics including mean, range and standard deviation, of 

reference values of magnesium and potassium contents in sample 

sets are given in Table 1. A larger variability of reference values 

was observed in the potassium. For the two nutrient parameters, 35 

the range of references values in the prediction set was included 

within the range of reference values in the calibration set. 

 

Table 1 Statistics of magnesium and potassium in rapeseeds 

Properties Sample set Minimum Maximum Mean Standard deviation 

Magnesium 
Calibration 0.2014 0.2576 0.2287 0.0106 

Prediction 0.2116 0.2450 0.2270 0.0080 

Potassium 
Calibration 0.4814 0.7418 0.6117 0.0583 

Prediction 0.5089 0.6828 0.6150 0.0510 

 40 

4.2. Spectral investigation 

The Fig. 1a gives the average of smoothing-processed spectra of 

all rapeseeds, and the corresponding second derivative spectrum 

is shown in Fig. 1b. Well-resolved peaks could be observed from 

the smoothed spectrum, and roughly related to the valleys in the 45 

second derivative spectrum where the baseline effect was 

eliminated, and some absent peaks become evident. Major 

spectral features of rapeseeds could be interpreted as follows43. 

The peaks at 3740 cm-1 and 3620 cm-1 were related with the 

free O-H stretching. A broad peak at 3365 cm-1 corresponded to 50 

O-H stretching and N-H stretching44. The peaks at 2925 cm-1 and 

at 2850cm-1were assigned to asymmetric and symmetric C-H 

stretching, respectively. A small peak at 2350 cm-1 corresponded 

to the asymmetric stretching of C=O bonds of the residual carbon 

dioxide45 in the photoacoustic cell. The peak at 1635 cm-1 was 55 

associated with O-H deformation vibration overlapping with the 

amide I C=O stretching. A shoulder peak around 1555 cm-1 

corresponded to the amide II (the out-of-phase combination of the 

N-H deformation vibration and C-N stretching vibration)46. The 

peak around 1435-1380 cm-1 corresponded to C-H deformation 60 

vibration. In the fingerprint range, 1200-500 cm-1, a broad band 

around 1060 cm-1 was mainly assigned to the C-O and C-C 

stretching. Besides, the peak around 1740 cm-1 corresponded to 

ester C=O stretching. 

65 

     
 

Fig. 1 The average spectrum of smoothed photoacoustic spectra of all rapeseed samples and the corresponding second derivative 
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spectrum. 

4.3. Calibration and prediction 
 

Table 2 shows the results of the calibration and prediction, 5 

obtained by PLS models, LS-SVM models and UVE-LS-SVM 

models. For all models, no pronounced differences between r
2 

cal 

and r
2 

pre and between RMSEC and RMSEP, were observed, which 

indicated the robustness of all models. According to RPD values, 

the best results for the estimation of magnesium and potassium 10 

were achieved both by UVE-LS-SVM models, followed by the 

LS-SVM models and PLS models. 

Table 2 Prediction results of magnesium and potassium in rapeseeds based on different models 

Properties Models 

Calibration set Prediction set 

RPD 

r
2 

cal 
RMSEC 

(×10-2) 
r

2 

pre 
RMSEP 

(×10-2) 

Magnesium 

PLS 0.823 0.44 0.688 0.47 1.70 

LS-SVM 0.895 0.34 0.799 0.36 2.22 

UVE-LS-SVM 0.923 0.29 0.838 0.32 2.5 

Potassium 

PLS 0.824 2.43 0.725 2.66 1.92 

LS-SVM 0.871 2.08 0.780 2.4 2.13 

UVE-LS-SVM 0.903 1.81 0.802 2.27 2.25 

 15 

 

For the PLS models, the RPD for potassium was 1.92, which 

indicated an acceptable quantitative model, while the model for 

magnesium needed to be improved due to the RPD lower than 1.8. 

Our result for potassium was close to the results reported by 20 

Clark et al.47 in forage samples (r
2 

pre= 0.74-0.81), and superior to 

the result report by Huang48, in the cut straw sample (RPD = 

1.66). Nevertheless, for the estimation of magnesium, Clark and 

Huang obtained better results, with r
2 

pre of 0.71-0.88 in forage 

samples and RPD of 2.11 in cut straw samples, respectively. Our 25 

poor RPD for magnesium was partly due to the relatively small 

standard deviation of reference values. For improved accuracy, 

more rapeseed samples should be included to increase the 

variation of magnesium content. The results of PLS models 

preliminarily proved the applicability of FTIR-PAS as a fast 30 

screening tool to measure the contents of magnesium and 

potassium in rapeseeds.  

Since PLS models failed to utilize some possible nonlinear 

relation between minerals and infrared spectra of rapeseeds, LS-

SVM models using the kernel function of RBF were established. 35 

The full spectrum was directly taken as the input for LS-SVM 

modeling. Through the optimization of parameters, γ and
2

σ , and 

for magnesium and potassium were 7.12 and 13.36, 0.58 and 9.37, 

respectively. The resulting RPD values for magnesium and 

potassium were 2.22 and 2.13, respectively. The RPD values were 40 

much higher than those obtained from the PLS models, and both 

higher than 2.0, indicating good models for quantitative 

prediction. The LS-SVM models had a better capacity than PLS 

models to quantify the contents of magnesium and potassium in 

rapeseed samples, which implied the hypothetical relationship 45 

between spectral information and mineral components of 

rapeseeds was probably nonlinear, and the LS-SVM models could 

well exploit this nonlinear relationship for improved prediction 

results.  

50 

      
 

Fig. 2 Reliability of each variable in UVE for the estimation of magnesium (a) and potassium (b). The two horizontal lines in the 

reliability plot denote the lower and upper cut-offs. 

 55 
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Fig. 3 Visual positions of spectral variables selected by UVE in the full spectrum for the determination of the contents of magnesium (a) 

and potassium (b) in rapeseeds. 

 5 

Full-spectrum modeling seemed cumbersome, and even 

detrimental to the prediction accuracy since some noisy or 

uninformative variables might be incorporated into final 

models. Thus, UVE was adopted to refine calibration models. 

Fig. 2a and Fig. 2b show the plots of reliability value of each 10 

variable for the determination of magnesium and potassium, 

respectively. In the reality plot, spectral variables were at the 

left of the vertical line while random variables at the right. The 

two horizontal lines were the cut-off lines. The spectral 

variable whose reliability was within the down and up cut-off 15 

lines was viewed as noisy or irrelevant, and to be removed. As 

a result, 121 and 76 variables were retained for the 

determination of magnesium and potassium, respectively. The 

visual positions of selected variables in in the full spectrum are 

shown in Fig. 3a and Fig. 3b, where columns corresponded to 20 

the selected spectral variables. Those variables might indicate 

the chemical complexes associated with mineral nutrients of 

magnesium and potassium.   

Selected variables were then employed as the input of LS-

SVM models. The optimal parameters combination γ and 
2

σ  25 

were 10.26 and 13.96 for magnesium, and 1.97 and 6.39 for 

potassium. A further improvement of models was obtained with 

RPD increasing to 2.5 for the prediction of magnesium, and 

RPD increasing to 2.25 for the prediction of potassium. The 

best prediction results for magnesium and potassium were both 30 

achieved with the parsimonious models of UVE-LS-SVM.  

This good performance of the use of UVE to improve LS-SVM 

models was in good agreement with the results reported by 

Wu49 and Huang50. Fig.4 shows the scatter plots of prediction 

results of the optimal models for the two properties.   35 

                
  

Fig. 4 Scatter plots of prediction results obtained by the UVE-LS-SVM models for the contents of magnesium (a) and potassium (b). The 

solid line was the reference line corresponding to the exact prediction, and samples were distributed along the reference line. 40 

 

5. Conclusion 

Quantifying magnesium content in rapeseeds by PLS model 

produced unsatisfactory results, while the results obtained from 

PLS model for the prediction of potassium content was 45 

acceptable. Further, improved prediction results were achieved 

by developing LS-SVM and UVE-LS-SVM models. LS-SVM 

could well take advantage of the nonlinearity existent between 

spectral variables and mineral nutrients of rapeseeds, and the 

adoption of UVE made LS-SVM models simplified and 50 

slightly better. The highest values of RPD for the prediction of 

the contents of magnesium and potassium in rapeseeds were 

2.5 and 2.25, respectively.  

Although the RPD values didn’t reach 3 proposed by 

Williams for quality control, FTIR-PAS had been verified as a 55 

rapid and non-destructive tool for rapeseed scanning. Moreover, 

the application of FTIR-PAS to determine the contents of 

magnesium and potassium in rapeseeds will depend on the 

accuracy required by work itself. Further work will need to be 

done by including more rapeseed samples from different 60 

agronomic conditions and plant years in order to improve the 

prediction accuracy of calibration models. 
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