This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A novel chromo- and fluorogenic dual sensor for Mg$^{2+}$ and Zn$^{2+}$ with cell imaging possibilities and DFT studies†.

Rabiul Alam$, Tarun Mistry, Atul Katarkar, Keya Chaudhuri, Sushil Kumar Mandal, Anisur Rahman Khudabukhsh, Kalyan K. Das and Mahammad Ali*a,

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
doi: 10.1039/b000000x

A diformyl-p-cresol (DFC)-8-aminoquinoline based dual signaling probe was found to exhibit colorimetric and fluorogenic properties on selective binding towards Mg$^{2+}$ and Zn$^{2+}$. Turn-on fluorescent enhancements (FE) as high as 40 fold and 53 fold in 9:1 MeCN/water (v/v) at pH 7.2 in HEPES buffer for Mg$^{2+}$ and Zn$^{2+}$, respectively were noticed. The binding constants determined from the fluorescence titration data are: $K = (1.52 \pm 0.21) \times 10^5$ M$^{-1}$ and $(9.34 \pm 4.0) \times 10^3$ M$^{-1}$ and $n=1$ and 0.5, for Mg$^{2+}$ and Zn$^{2+}$ respectively. The L:M binding ratios were also determined by Job’s method which support the above findings. This is further substantiated by HRMS analysis. Due to solubility in mixed organo-aqueous solvents as well as cell permeability it could be used for the in vitro/in vivo cell imaging of Mg$^{2+}$ and Zn$^{2+}$ ions with no or negligible cytotoxicity. This probe could be made selective towards Mg$^{2+}$ over Zn$^{2+}$ in presence of TPEN, both in intra- and extracellular conditions and superior to other Mg$^{2+}$ probes which suffer from selectivity of Mg$^{2+}$ over Ca$^{2+}$ or Zn$^{2+}$. Not only that the dissociation constant ($K_d = 6.60$ µM) of Mg$^{2+}$(DFC-8-AQ) complex is far lower than the so far reported Mg$^{2+}$ probes which fall in the mM range.

Introduction

Mg$^{2+}$ is the most abundant divalent cation in biological systems and considered as an important endogenous protective factor participating in many cellular functions such as enzyme-driven biochemical reactions, proliferation of cells, and stabilization of DNA conformation and regulation of Ca$^{2+}$ signaling. Moreover, Mg$^{2+}$ is also believed to be an etiological factor in many pathological processes, such as congestive heart failure, cerebral infarction, lung cancer, and muscle dysfunction. Magnesium is also required for the proper functioning of nerves and immune systems and for muscle and bone health.

It’s concentrations in cells typically varies between 0.1 mM and 6 mM: ~0.3 mM in synaptosomes; 0.37 mM in hepatocytes; 0.5 -1.2 mM in cardiac cells, while ~0.44–1.5 mM in normal serum. In diseased states, or under the administration of certain hormonal stimuli or cAMP signaling agents remarkable alterations in [Mg$^{2+}$] are observed. Thus, Mg$^{2+}$ represents an interesting paradox in the human body. While a trace amount is required for normal physiological functions, an unregulated amount may cause serious problems leading to hypermagnesia. Hence, measuring Mg$^{2+}$ in the blood serum is a necessary component of epidemiologic studies, and estimation of this mineral in food stuffs may help to formulate guidelines for determining the dietary requirements of diabetic patients. Consequently, the detection of Mg$^{2+}$ has attracted increasing interest in the areas of chemical and biological sciences. Although, many analytical methods like atomic absorption, ion-selective electrodes, and NMR are available for the detection of Mg$^{2+}$, optical detection following the changes in fluorescence or absorbance arising from the Mg$^{2+}$ induced perturbation of the chromophore is best suitable for Mg$^{2+}$ detection in biological systems. Thus, to understand the role of Mg$^{2+}$ in various cellular functions development of a simple, selective, and sensitive method for the determination of intracellular Mg$^{2+}$ concentration is very essential. On the other hand, Zn is also very essential for normal cellular functions and mobility. The major challenge is to apply a Zn-sensor to real-life situation where the intracellular Zn$^{2+}$ concentration...
spans only in nM range.16 The charged β-diketone binding site has been found to have very high selectivity towards Mg2+17 and a number of such Mg2+
selective fluorescent probes are reported in recent years.18-20 However, most of them and some commercially available Mg2+
indicators suffer from the lack of selectivity over Ca2+ and also with very high Kd values that essentially lie in few mM range with
FE as high as 50 fold.18-22 So it will be highly desirable to develop a Mg2+ probe which can display high selectivity, extensive FE
upon complexation and feasibility to apply for intracellular monitoring of Mg2+. Towards this end we have been successful to design a 2,6-diformyl- p-cresol[DFC, 1]-8-amino-quinoline(8-AQ, 2) based sensor (DFC-8-AQ), very close to charged β-
diketone binding sites that is suitable for preferential sensing of
Mg2+ in presence of other biologically relevant metal ions and suitable for \textit{in vivo}/\textit{in vitro} monitoring of Mg2+ ion.

![Scheme 1](image1)

\textbf{Results and Discussion}

\textbf{Synthesis of probe (DFC-8-AQ)}

The ligand DFC-8-AQ, a potential N\textsubscript{2}O donor, was prepared by stirring a mixture of 2,6-Diformyl-p-cresol (DFC) and 8-amino
quinoline in 1:1 mole ratio in ethanol for 5h at room temperature (Scheme 1). It was characterized by elemental analyses as well as by various spectroscopic methods like NMR (Figure S1) HRMS (Figure S2) (Experimental section) etc. The
complex 1 (Zn2+-complex) and 2 (Mg2+-complex) were prepared by stoichiometric reaction of Zn(ClO\textsubscript{4})\textsubscript{2}-6H\textsubscript{2}O and
Mg(ClO\textsubscript{4})\textsubscript{2}-6H\textsubscript{2}O with DFC-8-AQ in MeCN and characterized by CHN and Mass analyses (Figures S2b-S2a). The microanalyses are in well agreement with the chemical formula's of the complexes (Experimental section). Several trials to grow X-ray quality single crystals of the complexes were not successful.

\textbf{UV-Vis Absorption Studies}

The UV-Vis spectrum of sensor DFC-8-AQ was recorded in a CH\textsubscript{3}CN-H\textsubscript{2}O (9:1 v/v) at pH 7.2, 1.0 mM HEPES buffer (this is the medium for all measurement unless otherwise mentioned) which displayed well-defined bands at 500 and 369 nm. The cation binding affinities of DFC-8-AQ toward Mg2+ and Zn2+ were investigated by UV-Vis spectroscopy. Upon gradual addition of Zn2+ to a solution of DFC-8-AQ in CH\textsubscript{3}CN-H\textsubscript{2}O displayed an increase in absorption at 456 nm while bands at 369 and 513 nm gradually decrease generating three isosbestic points at 326, 405 and 500 nm indicating a clean transformation of free ligand to its metal bound state (Figure 1). Similar trend was observed with Mg2+ but here two isosbestic points at 480 and 411 nm were obtained (Figure 2). However, no such significant change in DFC-8-AQ spectrum was observed with other tested metal cations. The preferential binding of Mg2+ and Zn2+ (Scheme 1) in the pseudo-cavity of the sensor DFC-8-AQ reveals that the sensor binding sites are absorption band complementary to these cations.

![Figure 1](image2)

\textbf{Figure 1.} (a) Absorption titration of DFC-8-AQ (20 μM) with gradual addition of Zn2+; 2–20 μM in 9:1 v/v MeCN/water in HEPES buffer at pH 7.2. (b) (b) OD vs. [Zn2+]; (c) Job’s Plot.

![Figure 2](image3)

\textbf{Figure 2.} (a) Absorption titration of DFC-8-AQ (20μM) in 9:1 v/v MeCN/water in HEPES buffer at pH 7.2 with Mg2+. Inset shows (b) OD vs. [Mg2+]; (c) Job’s Plot.
Fluorescence studies

The emission spectra of DFC-8-AQ and its fluorescence titration with Zn\(^{2+}\) and Mg\(^{2+}\) were recorded in CH\(_3\)CN-H\(_2\)O (Figures 3 and 4). The reaction of a metal ion M\(^{2+}\) (M = Mg and Zn) with a chelating agent DFC-8-AQ induces rigidity in the resulting molecule and tends to produce a large CHEF effect which induces the large enhancement of fluorescence.\(^{23}\) In addition, there is a gradual blue shift of \(\lambda_{em}\) from 562 nm for pure ligand to 539 nm on complexation with Zn\(^{2+}\) and to 526 nm with Mg\(^{2+}\).\(^{24}\) When we plot absorbance or fluorescence intensity as a function of [M\(^{2+}\)] non-linear curves were obtained and can be easily solved by using eqn (1),\(^{25}\) where \(a\) and \(b\) are the absorbances/fluorescences in the absence and presence of excess metal ions, respectively, \(c\) (\(= K\)) is the formation constant and \(n\) is the stoichiometry of the reactions.

\[
y = \frac{a + b e^{-n x}}{1 + c e^{-n x}} \quad (1)
\]

The non-linear least-squares curve-fit of the absorption titration data gives: \(c = K = (5.25 \pm 2.02) \times 10^3\) M\(^{-1}\), \(n = 0.70\) and \(K = (2.00 \pm 0.66) \times 10^5\) M\(^{-1}\), \(n = 1\) for Zn\(^{2+}\) and Mg\(^{2+}\), respectively. The corresponding fluorescence titration data to equation (1) gives the parameters: \(c = K = (9.34 \pm 4.0) \times 10^5\) M\(^{-1}\), \(n = 1\) for Zn\(^{2+}\) and Mg\(^{2+}\), respectively. There are reasonable agreements between the data extracted from the two different experiments, namely absorption and fluorescence titrations. The mass spectrum of [M(DFC-8-AQ)]\(^{+}\) in MeCN revealed a DFC-8-AQ:Mg\(^{2+}\) = 1:1 with a peak at m/z = 354.03 ([Mg(DFC-8-AQ)(MeCN)]\(^{+}\)) while for Zn\(^{2+}\) a prominent peak at 650.14 ([Zn(DFC-8-AQ)]\(^{2+}\)+Li\(^{+}\)) indicates a 2:1 complexation with respect to ligand (Figure S2a-S2b).

Figure 3. (a) Fluorescence titration of DFC-8-AQ (20 μM) in 9:1 (v/v) MeCN/water in HEPES buffer at pH 7.2 by the gradual addition Zn\(^{2+}\) (0-40 μM) with \(\lambda_{ex} = 430\) nm, \(\lambda_{em} = 562\) nm Inset (b) Plot of F.I vs. [Zn\(^{2+}\)]; (c) Naked-eye image of DFC-8-AQ and with Zn\(^{2+}\).

Figure 4. (a) Fluorescence titration of DFC-8-AQ (20 μM) in 9:1 (v/v) MeCN/water in HEPES buffer at pH 7.2 by the gradual addition Mg\(^{2+}\) (0-50 μM) with \(\lambda_{ex} = 430\) nm, \(\lambda_{em} = 526\) nm Inset (b) Plot of F.I vs. [Mg\(^{2+}\)]; (c) Naked-eye image of DFC-8-AQ and with Mg\(^{2+}\).

Figure 5. \(^1\)H-NMR shifts of free ligand and with addition of 1.5 equivalent of Zn\(^{2+}\) and Mg\(^{2+}\) in CD\(_3\)CN recorded on a 300 MHz Bruker NMR spectrometer.

Figure 6. Histogram of the fluorescence responses of different ions (100 μM) towards DFC-8-AQ (20 μM) in 9:1 v/v MeCN/water in HEPES buffer at pH 7.2.
The coordination modes were further supported by \(^1\)H-NMR studies (Figure 5) which clearly showed a change in chemical shifts of azomethine proton as well as the protons on quinoline moiety (Table S1). In the ligand there is an intramolecular H-bonding between formyl oxygen and the –OH group [O...H = 1.61 Å, vide infra] resulting a downfield shift of –OH proton as a broad signal to 15.39 ppm. An up-field shift of formyl hydrogen (b) signal from 10.53 to 10.16 ppm suggests the removal of H-bonding of formyl O atom with the OH proton of free ligand and its non-participation in bonding to M\(^{2+}\) in the complexes. The down-field shift of azomethine proton(c) signal from 9.003 to 9.26 in complex 1 and 9.57 in complex 2 clearly indicates the participation of azomethine N atom in bonding with the metal ions in both the complexes. The proton g and f are shifted downfield due to coordination of azomethine and quinoline N atoms to the metal center.

Mg\(^{2+}\) and Zn\(^{2+}\) detections were not perturbed by biologically abundant Na\(^+\), K\(^+\), Ca\(^{2+}\) etc metal ions (Figure S3). Several transition metal ions, namely Cr\(^{3+}\), Mn\(^{2+}\), Fe\(^{2+}\), Fe\(^{3+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), and heavy metal ions like Ca\(^{2+}\), Pb\(^{2+}\), and Hg\(^{2+}\), also caused no interference (Figure 6). The sensor was found to bind M\(^{2+}\) reversibly as tested by reacting with EDTA (Figure S4). However, in presence of TPEN the fluorescence is completely masked for Zn\(^{2+}\) but for Mg\(^{2+}\) this remains almost unchanged favouring the selective detection of Mg\(^{2+}\) in presence of Zn\(^{2+}\) (Figure 7), which is the added advantage of this probe over other reported or commercially available Mg\(^{2+}\) probes that recognise other metal ions like Ca\(^{2+}\) or Zn\(^{2+}\) along with Mg\(^{2+}\). Not only that the dissociation constant (\(K_d = 6.60\ \mu M\)) of Mg\(^{2+}\)-(DFC-8-AQ) complex is far lower than the so far reported Mg\(^{2+}\) probes which falls in the mM range. Quantum yields of the DFC-8-AQ, and its Zn\(^{2+}\) and Mg\(^{2+}\) complexes were determined with values Zn (0.163) and Mg (0.131) which are 3-4 times higher than the pure DFC-8-AQ (0.043). LOD for Mg\(^{2+}\) and Zn\(^{2+}\) were determined by 3\(\sigma\) method which are found to be 2.04 and 5.81 nM respectively (Fig S9 in Supporting Information).

We have also recorded the absorption and fluorescence spectra of the free ligand (20 \(\mu M\)), its Mg\(^{2+}\)(20 \(\mu M\ L + 30 \mu M\ Mg\(^{2+}\)) and Zn\(^{2+}\)(20 \(\mu M\ L + 30 \mu M\ Zn\(^{2+}\)) complexes in 9:1, 8:2, 7:3, 6:4, 1:1, 4:6, 3:7, 2:8 and 1:9, v/v, MeCN-H\(_2\)O solvent mixtures. Though there is a very slight increase in absorbance as well as fluorescence intensity of the free ligand with the increase in water content, there no visible change in them in case of Zn\(^{2+}\) complex, whereas in case of Mg\(^{2+}\) complex there is a decrease in absorbance as well as Fl with the increase in water content (Please See the Figure S5 in Supporting Information).

Figure 7. Reversibility plot of Zn\(^{2+}\) and Mg\(^{2+}\)-complexes in presence of TPEN.
mode analysis, where all vibrational frequencies were found to be positive. Some selected optimized geometrical parameters of DFC-8-AQ and complexes 1 and 2 are listed in Table 1 and geometry optimized structures are given in Figure 8.

The modelled geometry of complex 1 and 2 possess a distorted octahedral arrangement around the central metal ions. In 1 all the calculated Zn-N/Zn-O distances fall in the range 2.054 - 2.319 Å and comparable to the reported values in the analogous complexes. The two formyl groups present in the two coordinated ligands remain uncoordinated and this is in conformity of 1H NMR studies which showed up-field shift of formyl hydrogen (b) signal from 10.53 to 10.16 ppm (Figure 5). In case of complex 2, one DFC-8-AQ with N2O donor atoms and three water molecules surround the Mg atom giving it a distorted octahedral geometry. Here also the formyl group remained uncoordinated and supported by 1H NMR studies. On complexation some C-N and C-O bond lengths are slightly changed with respect to those in free ligand (Table 1).

Time dependent density functional theory (TDDFT)28-30 with B3LYP density functional was applied to study the low-lying excited states of the complex in MeCN using the optimized geometry of the ground (S\textsubscript{0}) state. The vertical excitation energies of the lowest 20 singlet states are also computed here.

Table 1 Selected optimized geometrical parameters for DFC-8-AQ and complexes 1 and 2 in the ground state calculated at B3LYP Levels.

<table>
<thead>
<tr>
<th>Bond Distance (Å)</th>
<th>Bond Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C12</td>
<td>1.46</td>
</tr>
<tr>
<td>N14-C12</td>
<td>1.29</td>
</tr>
<tr>
<td>N30-C21</td>
<td>1.32</td>
</tr>
<tr>
<td>C2-O9</td>
<td>1.35</td>
</tr>
<tr>
<td>N30-C16</td>
<td>1.36</td>
</tr>
<tr>
<td>C11-O35</td>
<td>1.26</td>
</tr>
<tr>
<td>Zn1-N61</td>
<td>2.318</td>
</tr>
<tr>
<td>N61-Zn1-N63</td>
<td>87.00</td>
</tr>
<tr>
<td>Zn1-N62</td>
<td>2.195</td>
</tr>
<tr>
<td>N61-Zn1-O67</td>
<td>87.60</td>
</tr>
<tr>
<td>Zn1-N63</td>
<td>2.319</td>
</tr>
<tr>
<td>N63-Zn1-O65</td>
<td>87.70</td>
</tr>
<tr>
<td>Zn1-N64</td>
<td>2.195</td>
</tr>
<tr>
<td>O65-Zn1-O67</td>
<td>105.7</td>
</tr>
<tr>
<td>Zn1-O65</td>
<td>2.054</td>
</tr>
<tr>
<td>N61-Zn1-O67</td>
<td>176.4</td>
</tr>
<tr>
<td>Zn1-O67</td>
<td>2.054</td>
</tr>
<tr>
<td>N62-Zn1-N64</td>
<td>73.60</td>
</tr>
<tr>
<td>C69-O71</td>
<td>1.227</td>
</tr>
<tr>
<td>N10-Mg36-N34</td>
<td>77.1</td>
</tr>
<tr>
<td>Mg36-N34</td>
<td>2.179</td>
</tr>
<tr>
<td>O35-Mg36-N10</td>
<td>83.9</td>
</tr>
<tr>
<td>Mg36-O35</td>
<td>1.960</td>
</tr>
<tr>
<td>O35-Mg36-O37</td>
<td>77.4</td>
</tr>
<tr>
<td>Mg36-O37</td>
<td>2.214</td>
</tr>
<tr>
<td>O34-Mg36-O37</td>
<td>124.2</td>
</tr>
<tr>
<td>Mg36-O41</td>
<td>2.145</td>
</tr>
<tr>
<td>O37-Mg36-O40</td>
<td>74.6</td>
</tr>
<tr>
<td>Mg36-O40</td>
<td>2.50</td>
</tr>
<tr>
<td>O40-Mg36-O41</td>
<td>158.6</td>
</tr>
<tr>
<td>C2-O35</td>
<td>1.254</td>
</tr>
<tr>
<td>N10-Mg36-O41</td>
<td>106.8</td>
</tr>
<tr>
<td>C11-O12</td>
<td>1.233</td>
</tr>
<tr>
<td>N34-Mg36-O41</td>
<td>90.16</td>
</tr>
<tr>
<td>N10-Mg36-O40</td>
<td>94.2</td>
</tr>
<tr>
<td>N34-Mg36-O40</td>
<td>90.8</td>
</tr>
</tbody>
</table>

Figure 9. MO diagrams for the [Zn(DFC-8-AQ)\textsubscript{2}]
The UV spectra computed from TDDFT calculations in MeCN show two important peaks in the range 300-600 nm (See Figures S5-S6). For complex 1, the band around 455 nm is dominated by the HOMO→LUMO+1 and HOMO→LUMO+1 excitations, while the band around 347 nm is mainly due to HOMO-3→LUMO+1 and HOMO-4→LUMO transitions. The details of the vertical excitation energies, oscillator strengths, and nature of excitations are shown in Table 2. For complex 2 the band around 447 nm is dominated by the HOMO→LUMO excitation, while the band around 343 nm is mainly due to HOMO-2→LUMO transitions as depicted in Table 2. Here, calculated spectra of the complexes are found to be in excellent match with the experimental ones with λ_{max} (absorption) values calculated (experimental): 455 (456) and 347 (368) nm for Zn$^{2+}$ and 447 (453) and 343 (369) nm for Mg$^{2+}$ (Figure S6-S8). MO diagrams of Zn$^{2+}$ and Mg$^{2+}$ complexes are shown in Figure 9 and 10 respectively.

Table 2. Vertical excitation energies (E_{exc}), oscillator strengths (f_{osc}), and type of excitations of the lowest few excited singlets obtained from TDDFT calculations of [Zn(DFC-8-AQ)]$^+$ and [Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$ in MeCN.

<table>
<thead>
<tr>
<th>Compound</th>
<th>State</th>
<th>E_{exc}/eV</th>
<th>f_{osc}</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zn(DFC-8-AQ)]$^+$</td>
<td>S_1</td>
<td>459</td>
<td>0.2535</td>
<td>HOMO-1→LUMO+1 (0.34), HOMO→LUMO+1 (0.34),</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>455</td>
<td>0.3777</td>
<td>HOMO-3→LUMO+1 (0.68), HOMO-1→LUMO+1 (0.68),</td>
</tr>
<tr>
<td></td>
<td>S_3</td>
<td>448</td>
<td>0.2897</td>
<td>HOMO-4→LUMO+1 (0.68),</td>
</tr>
<tr>
<td>[Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$</td>
<td>S_1</td>
<td>447</td>
<td>0.4944</td>
<td>HOMO→LUMO+1 (0.87),</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>343</td>
<td>0.1231</td>
<td>HOMO-2→LUMO (0.24),</td>
</tr>
</tbody>
</table>

Figure 10. MO diagrams for the [Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$

The UV spectra computed from TDDFT calculations in MeCN show two important peaks in the range 300-600 nm (See Figures S5-S6). For complex 1, the band around 455 nm is dominated by the HOMO→LUMO+1 and HOMO→LUMO+1 excitations, while the band around 347 nm is mainly due to HOMO-3→LUMO+1 and HOMO-4→LUMO transitions. The details of the vertical excitation energies, oscillator strengths, and nature of excitations are shown in Table 2. For complex 2 the band around 447 nm is dominated by the HOMO→LUMO excitation, while the band around 343 nm is mainly due to HOMO-2→LUMO transitions as depicted in Table 2. Here, calculated spectra of the complexes are found to be in excellent match with the experimental ones with λ_{max} (absorption) values calculated (experimental): 455 (456) and 347 (368) nm for Zn$^{2+}$ and 447 (453) and 343 (369) nm for Mg$^{2+}$ (Figure S6-S8). MO diagrams of Zn$^{2+}$ and Mg$^{2+}$ complexes are shown in Figure 9 and 10 respectively.

Table 2. Vertical excitation energies (E_{exc}), oscillator strengths (f_{osc}), and type of excitations of the lowest few excited singlets obtained from TDDFT calculations of [Zn(DFC-8-AQ)]$^+$ and [Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$ in MeCN.

<table>
<thead>
<tr>
<th>Compound</th>
<th>State</th>
<th>E_{exc}/eV</th>
<th>f_{osc}</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zn(DFC-8-AQ)]$^+$</td>
<td>S_1</td>
<td>459</td>
<td>0.2535</td>
<td>HOMO-1→LUMO+1 (0.34), HOMO→LUMO+1 (0.34),</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>455</td>
<td>0.3777</td>
<td>HOMO-3→LUMO+1 (0.68), HOMO-1→LUMO+1 (0.68),</td>
</tr>
<tr>
<td></td>
<td>S_3</td>
<td>448</td>
<td>0.2897</td>
<td>HOMO-4→LUMO+1 (0.68),</td>
</tr>
<tr>
<td>[Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$</td>
<td>S_1</td>
<td>447</td>
<td>0.4944</td>
<td>HOMO→LUMO+1 (0.87),</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>343</td>
<td>0.1231</td>
<td>HOMO-2→LUMO (0.24),</td>
</tr>
</tbody>
</table>

Figure 10. MO diagrams for the [Mg(DFC-8-AQ)(H$_2$O)$_2$]$^+$

The dependences of fluorescence intensity of the free ligand and its Mg$^{2+}$ and Zn$^{2+}$ complexes on the pH of the medium were investigated in the range pH 2.0 to 10.0 at [DFC-8-AQ] = 20 µM, [Mg$^{2+}$] 30 µM in 9:1 MeCN:H$_2$O v/v in HEPES buffer(Figure 11). It was observed that in the above mentioned pH range the Fi of the free ligand remains almost constant at ~ 9.0 ± 1.0. However, on addition of 1.2 equivalents of Mg$^{2+}$ the Fi jumps to 350 ± 20 and remains constant in the range pH 2-8, but on further increase in pH the Fi gradually falls. Similar is the trend in case for Zn$^{2+}$ complex but here Fi remains almost constant at ~ 500 ± 20 in the range pH 2-8 and then drastically falls to Fi ~115 due to the removal of Zn$^{2+}$ from the complex with the formation of Zn(OH)$_2$ at pH> 8.0. The slightly higher value of Fi of the complexes than that of free ligand may be due to the fact that certain fraction the complex remains undissociated in solution phase at pH ~10.0.

Figure 11. pH dependence of fluorescence responses of DFC-8-AQ and its Zn$^{2+}$ and Mg$^{2+}$-complexes in 9:1 (v/v) MeCN/water.

Cell Imaging and Cytotoxicity Studies

To test the cytotoxicity of DFC-8-AQ in HepG2 cells, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed as per the procedure described earlier which revealed that after treatment with DFC-8-AQ at different doses of 1, 10, 20, 50 and 100 µM, respectively for 12 h no significant cytotoxicity was observed (Figure 12).

Figure 12. Represents % cell viability of HepG2 cells treated with different concentrations (1 µM-100 µM) of DFC-8-AQ for 12 hrs determined by MTT assay. Results are expressed as mean of three independent experiments.
The intracellular Mg2+ imaging behaviours of DFC-8-AQ on HepG2 cells with the aid of fluorescence microscopy displayed intracellular fluorescence when treated with 10µM DFC-8-AQ (Figure 13). The same intensity was observed after external addition of tetrakis-(2-Pyridylmethyl)ethylenediamine (TPEN) 100 µM. However, cells exhibited intense fluorescence behaviour when the DFC-8-AQ pre-incubated cells were added externally with Mg2+ and Zn2+ (10 µM each) separately. The fluorescence behaviour of the cells pre-exposed to Zn2+ ion (10 µM) was, however, suppressed when incubated with TEPN (100 µM) because of a strong scavenging action of TPEN on Zn2+ ions (Figure 13). Again, when cells pre-exposed with both the metal ions were treated with TPEN (100 µM), there was an intense fluorescence, as it did not block the Mg2+ ions (Figure 13). Therefore, this renders confirmatory evidence of the sensor having the ability to perform a dual roles, both as a sensor of Mg2+ and Zn2+ ions, and either singly or in combination; and may find application in biological monitoring of these metal ions, because of its relatively low cytotoxicity up to 12 hr (Figure 12), at the indicated dose and time of incubation.

![Figure 13](image-url)

Figure 13. The phase contrast and fluorescence images of HepG2 cells were capture after being incubated with DFC-8-AQ, DFC-8-AQ+Mg2+, DFC-8-AQ+Zn2+ and DFC-8-AQ+Mg2++Zn2+ for 30 min at 37 °C and followed by addition of 100 µM TPEN after 30 min pre-incubated with DFC-8-AQ, DFC-8-AQ+Mg2+, DFC-8-AQ+Zn2+ and DFC-8-AQ+Mg2++Zn2+ and allow incubation for next 30 min.
In summary, we have been successful to design and synthesize a novel DFC-8-AQ based highly selective Mg$^{2+}$ sensor which displayed 40 fold in 9:1 MeCN:H$_2$O v/v at pH 7.20 in 1 mM HEPES buffer as well as the highest formation constant (K) value with the possibility of in vivo dynamic monitoring of Mg$^{2+}$ concentration. Not only that, whereas most of the previously reported probes suffer from selectivity of Mg$^{2+}$ over Ca$^{2+}$, that is present in high concentration in cellular system, this probe is highly selective towards Mg$^{2+}$ and Zn$^{2+}$, which can further be selective towards Mg$^{2+}$ when Zn$^{2+}$ is masked by TPEN.

Materials and Methods

The starting materials such as 8-aminoquinoline (Sigma Aldrich), 2,6-Diformyl-p-cresol (DFC) prepared in the laboratory) were used for the preparation of ligands DFC-8-AQ, Mg(ClO$_4$)$_2$, 6H$_2$O (Merck, Germany), and Zn(ClO$_4$)$_2$, 6H$_2$O was used to prepare Mg$^{2+}$-complex and Zn$^{2+}$ complex, respectively. Solvents like MeCN, Ethanol, (Merck, India) were of reagent grade and dried before use.

Preparation of 2-Hydroxy-5-methyl-3-(quinolin-8-yliminomethyl)-benzaldehyde (DFC-8-AQ): 2,6-Diformyl-p-cresol (DFC) was prepared by following a literature procedure. 2,6-Diformyl-p-cresol (DFC) (1.64 g, 10 mmol) was dissolved in 25 mL EtOH under nitrogen atmosphere. To this solution was added 8-amino quinoline (Sigma Aldrich) (1.44 g, 10 mmol) and stirred at room temperature for 5h and then nitrogen atmosphere. To this solution was added 8-amino quinoline (Sigma Aldrich) (1.44 g, 10 mmol) and stirred at room temperature for 5h and then kept at 0 °C for 12 h to afford complex 1 as microcrystals. Yield: .398g (~70%). CHN analyses for ([Zn(DFC-8-AQ)]$_2$) C$_{26}$H$_{26}$N$_2$O$_{12}$Zn (M.W.644), Calcd (%): C, 67.14; H 4.07; N, 8.70. Found (%): C, 67.16, H 4.10, N 8.81. UV-Vis.(MeCN): λ_{max} 453 nm (Figure 1).

Complex 2. Mg(ClO$_4$)$_2$, 6H$_2$O (0.331 g, 1 mmol) was dissolved in 10 ml of MeCN and to this solution, the ligand DFC-8-AQ (0.290 g,1 mmol) was added. The color of the solution changed to yellow. The resulting mixture was stirred for 3 h. The volume of the solution was reduced to 5 ml under reduced pressure and diethyl ether (10 ml) was added and kept at 0 °C for 12 h to afford complex 1 as microcrystals. Yield: .356g (~60%). CHN analyses for ([Mg(DFC-8-AQ)](CH$_3$CN)) C$_{26}$H$_{26}$N$_2$O$_2$Mg (M.W.354), Calcd (%): C, 67.73; H 4.55; N, 11.85. Found (%): C, 67.82, H 4.70, N 12.12. UV-vis. (MeCN): λ_{max} 455 nm (Figure 2).

Physical Measurements

Elemental analyses were carried out using a Perkin–Elmer 240 elemental analyzer. 1H-NMR was recorded in CDC$_3$ on a Bruker 300 MHz NMR Spectrometer using tetramethylsilane (δ = 0) as an internal standard. UV-Vis spectra were recorded on an Agilent diode-array spectrophotometer (Model, Agilent 8453). Steady-state Fluorescence spectra were recorded on a Shimadzu spectro-fluorimeter (Model RF-5301), ESI-MS$^+$ (m/z) of the ligand and its Mg$^{2+}$ and Zn$^{2+}$ complexes were recorded on Waters HRMS spectrometers (Model: QTOF Micro YA263 and Model: XEVO-G2QTOF#YCA351).

Computational details

DFT calculations on DFC-8-AQ, [Zn(DFC-8-AQ)]$_2$ and [Mg(DFC-8-AQ)(H$_2$O)$_3$]$^{2+}$ were fully optimized using Gaussian 03 program. The B3LYP functional has been adopted along with 6-31++G(d,p) basis set for H, C, N, O atoms and LANL2DZ effective core potentials and basis set for the Zn atom. In case of [Mg(DFC-8-AQ)(H$_2$O)$_3$]$^{2+}$ 6-31++G(d,p) basis set was used for all the atoms including Mg. The global minima of all these species were confirmed by the positive vibrational frequencies. Time dependent density functional theory (TDDFT) with B3LYP density functional was applied to study the low-lying excited states of the complex in MeCN using the optimized geometry of the ground (S_0) state. The vertical excitation energies of the lowest 20 singlet states are also computed here. The UV spectra were computed from TDDFT calculations in MeCN.
Cell culture

HepG2 cell line, Human hepatocellular liver carcinoma cells, were procured from National Center for Cell Science, Pune, India, and used throughout the study. Cells were cultured in DMEM (Gibco BRL) supplemented with 10% FBS (Gibco BRL), and a 1% antibiotic mixture containing PSN (Gibco BRL) at 37°C in a humidified incubator with 5% CO₂ and cells were grown to 80-90% confluence, harvested with 0.025% trypsin (Gibco BRL) and 0.52 mM EDTA (Gibco BRL) in phosphate-buffered saline (PBS), and plated at the desired cell concentration and allowed to re-equilibrate for 24 h before any treatment.

Cytotoxicity and Cell Imaging Studies

To test the cytotoxicity of DFC-8-AQ, 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed as per the procedure described earlier. After treatment with DFC-8-AQ at different doses of 1, 10, 20, 50 and 100 μM, respectively, for 12 h, 10 μl of MTT solution was added to each well, and the mixture was incubated for 4 h at 37°C. To achieve solubilisation of formazan crystals formed in viable cells, 100 μl of dimethyl sulfoxide (DMSO) was added to each well and the optical density was measured at 550 nm (OD₅₅₀) (EMax precision microplate reader; Molecular Devices). The percentage of cytotoxicity was calculated as cytotoxicity = (1 − A_test/A_control) × 100. Cells were incubated with 10 μM DFC-8-AQ [1 mM stock solution was prepared by dissolving DFC-8-AQ in DMSO: water = 1:9 (v/v)] in the culture medium for 30 min at 37 °C and then washed twice with phosphate-buffered saline (PBS). After that, the bright field and fluorescence images of HepG2 cells were taken by a fluorescence microscope (Leica DM3000, Germany) with an objective lens of 20X magnification; fluorescence images of HepG2 cells incubated with 10 μM DFC-8-AQ for 30 min followed by addition of a mixture of both 10 μM Mg²⁺ ions (Mg(ClO₄)₂) and 10 μM Zn(ClO₄)₂ were taken and similarly two sets of experiments were done, one with the addition of only 10 μM Mg(ClO₄)₂ and the other, with the addition of only 10 μM Zn(ClO₄)₂ instead of addition of both the metal ions simultaneously; fluorescence images were taken separately. Another experiment was done with the sensor plus Zn²⁺ ions together with 100 μM TPEN and fluorescence images were then taken. Similarly another set of experiments were carried out and fluorescence images of HepG2 cells, after being incubated at 37 °C with 10 μM DFC-8-AQ for 30 min followed by 15 min incubation with a mixture of both 10 μM extracellular Mg²⁺ ions and 10 μM extracellular Zn²⁺ ions together with 100μM TPEN were taken.

Acknowledgement

Financial supports from CSIR (Ref. 02(2490)/11/EMR-II) and DST (Ref. SR/S1/IC-20/2012) New Delhi, are gratefully acknowledged.

References

26 M. J. Frisch, et al., Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
A novel chromo- and fluorogenic dual sensor for Mg$^{2+}$ and Zn$^{2+}$ with cell imaging possibilities and DFT studies†.

A diformyl-p-cresol (DFC)-8-aminoquinoline based signaling probe was found to exhibit dual colormetric and fluorogenic properties on selective binding towards Mg$^{2+}$ and Zn$^{2+}$. This probe could be made selective towards Mg$^{2+}$ over Zn$^{2+}$ in presence of TPEN both in intra- and extracellular conditions.