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Abstract 

The observation of viral plaques is the standard method for determining viral titer and understanding the 

behaviors of viruses. Here, we report the application of a wide field-of-view (FOV), time-lapse, on-chip 

imaging platform, termed the ePetri, for plaque analysis of murine norovirus 1 (MNV-1). The ePetri 

offers the ability to dynamically track plaques at the individual cell death event level over a wide FOV of 

6 mm × 4 mm. As demonstration, we captured high-resolution time-lapse images of MNV-1-infected 

cells at 30 min intervals. We implemented a customized image-processing program containing a density-

based clustering algorithm to analyze the spatial-temporal distribution of cell death events to identify 

plaques at their earliest stages. By using the results in a viral titer count format, we showed that our 

approach gives results that are comparable to conventional plaque assays. We further showed that the 

extra information collected by the ePetri can be used to monitor the dynamics of plaque formation and 

growth. Finally, we performed a demonstration experiment to show the relevance of such an experimental 

format for viral inhibitor study. We believe the ePetri is a simple and compact solution for the automation 

of viral plaque assays, plaque behavior analysis, and antiviral drug discovery and study. 

Keywords: plaque assay, time-lapse on-chip imaging, clustering algorithm 

 

Introduction 

The analysis of viral plaques is the standard method for determining virus concentration and 

understanding their proliferation and spread behaviors.
1, 2

 A plaque is a region of host cells undergoing 

cytopathic effects (CPEs). Plaque growth is initiated when a virus particle attaches to a host cell, 

penetrates the cell membrane, replicates, induces CPE, and releases a new generation of viruses, which 

then diffuse to neighboring host cells to repeat the process.
3
 Because each plaque originates from a single 

virus particle, the number of plaques can be counted to determine the virus titer in a sample. This method 

is termed a plaque assay, and is widely used for viral quantification.
1, 4

 The area and shape of the plaques, 

together with the speed of plaque growth, can be used to study viral behavior.
5
 Viral plaques can also be 

used for the screening of antiviral drugs.
6
 

Since the establishment of the first plaque assay,
4
 little has changed over the decades. Viral plaques are 

still grown in conventional Petri dishes or multi-well plates. Plaques are counted by the naked eye; 

therefore, several days are required for sufficient growth of the plaques.
1
 This manual counting process is 
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labor-intensive and time-consuming. The plates also have to be taken out of the incubator for observation, 

which is inconvenient and may disturb virus distribution. In addition, the cells need to be stained with 

dyes such as neutral red or crystal violet to enhance contrast for the plaque readout, preventing continuous 

monitoring of plaque growth dynamics. 

In recent years, studies have used standard microscopes for time-lapse imaging of viral plaques in order to 

investigate the behaviors of different viruses. Wodarz et al. monitored the spatial dynamics of 

recombinant adenovirus type-5 proliferation using a fluorescence microscope.
7
 However, they had a large 

imaging interval (24 h), and had to capture several images for each plaque and stitch them together due to 

the small field-of-view (FOV) of the microscope. Doceul et al. studied the rapid plaque growth of 

Vaccinia virus using a microscope integrated with a stage incubator that collected time-lapse images at 

much shorter intervals (1 h);
2
 however, they were also restricted by a 10× objective FOV, so a limited 

number of plaques were recorded for statistical build-up. In summary, standard microscopes are high-cost 

with limited FOVs; therefore, they are not ideal platforms for viral plaque analysis. 

Commercialized systems such as the aCOLyte 3 and ProtoCOL 3 from Synbiosis were developed for 

wide FOV colony counting. They used light-emitting diodes (LEDs) for illumination, a charge-coupled 

device (CCD) camera with a lens for imaging, and integrated software capable of automated plaque 

counting from Petri dishes or multi-well plates. However, they have limited resolution (e.g., ProtoCOL 3 

can accurately measure features down to 0.1 mm) and cannot support the observation of single cell death 

events. They do not provide a cell culture environment and are not designed for continuous plaque growth 

monitoring. Similar to the conventional manual plaque counting method, the sample usually has to be 

stained with dyes to provide better contrast for the automatic plaque counting software. A technology that 

combines the resolution of a microscope with the large FOV of a commercialized colony counting 

system, and supports time-lapse imaging is strongly needed.  

We recently developed a wide-FOV, on-chip imaging method termed ePetri and have demonstrated its 

compact, wide-FOV imaging capability in longitudinal monitoring of cell culture and stem cell 

differentiation.
8
 This technique is based on the use of a super-resolution algorithm

9
 in combination with 

proximal cell imaging by growing the cells directly on the sensor chip to perform high-resolution and 

wide-FOV imaging. If the resolution of the image is restricted by the detector pixel size, we can enhance 

it by capturing a sequence of sub-pixel-shifted, low-resolution (LR) images and combining them to 

reconstruct a high-resolution (HR) image. The ePetri device has demonstrated the ability to image at 700-

nm resolution with a FOV of 6 mm × 4 mm without using any optical lenses.  

In this study, we developed the ePetri device for use with viral plaque assays, as well as for monitoring 

the dynamics of viral plaque formation and development. We chose murine norovirus 1 (MNV-1) as our 

model virus and RAW 264.7 as the host cell line. During the on-chip plaque growth we obtained a 24-

mm
2
 FOV and time-lapse HR images at 30 min intervals. We then built an image-processing program for 

plaque recognition and tracking. We observed that cells undergoing CPE would detach from the substrate, 

becoming spherical, which focuses more light onto the sensor surface, causing them to appear much 

brighter than healthy cells. Taking advantage of this effect, we were able to segment dying cells from 

healthy cells using a simple thresholding method. We also noticed that a plaque is a cluster of high-

density cell death events, so we incorporated a well-established, density-based clustering algorithm
10

 to 

detect the plaques. To our knowledge, this is the first time a clustering algorithm has been used for viral 

Page 2 of 14Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



plaque detection. The last step of the program distinguishes between connected plaques by tracking their 

growth history. Using this program we conducted a plaque assay, tracked plaque growth, and studied viral 

inhibitors.  

In the next section, we will describe the ePetri device setup in detail and explain the imaging approach. 

Next we will explain our customized plaque recognition program. We will demonstrate the plaque 

counting performance of our system in comparison with conventional plaque assays. Then, we will show 

the dynamic monitoring of plaque formation and growth. Finally, we will describe the demonstration use 

of our system to investigate the responses of viral plaque growth to two different viral inhibitors: 2’-C-

methylcytidine (2CMC) and neuraminidase.   

 

Results 

Imaging principles and system setup 

When the sample is on the surface of a complementary metal-oxide semiconductor (CMOS) image 

sensor, it can directly record a shadow image of the sample. However, due to the pixel size of the image 

sensor (2.2 µm in our experiment), the resolution is limited to approximately twice the pixel size 

(according to the Nyquist criterion). To improve the pixel-limited resolution, we applied a super-

resolution algorithm described in our previous work.
8, 9

 Briefly, we placed the sample 1 µm above the 

image sensor surface (determined by the sensor’s passivation layer), then tilted the illumination angle to 

induce a sub-pixel shift of the sample shadow on the image sensor, and captured a series of LR images at 

each angle. Next, we calculated the amount of the shift by estimating the height of the sample above the 

pixels. Finally, we interpolated the LR images into a larger matrix according to their corresponding shift 

amounts, to reconstruct a HR image. 

The ePetri device is depicted in Figure 1a. It consists of (1) an illuminator, (2) a CMOS sensor chip with a 

reservoir (also shown in Figure 1b), (3) a camera board, and (4) a thermoelectric cooler (TEC) with a fan. 

RAW 264.7 cells were cultured on the sensor (Figure 1c1), and infected with MNV-1 (Figure 1c2); 

subsequently, the sensor chip was mounted onto the camera board. As viral plaques appeared and 

expanded (Figure 1c3), time-lapse LR images were recorded: at each frame, the LED array illuminated 

the sample from different angles, creating a sequence of LR images. The TEC and fan were used to 

protect the cells and viruses from the heat generated by the sensor circuit. During the imaging process, the 

system was placed inside a standard 37°C CO2 incubator. A laptop running a customized MATLAB 

program was used to control the LED array, the TEC, and the fan, as well as collecting the LR images at 

30-min intervals. After imaging, another customized MATLAB super-resolution program processed the 

LR images and produced a HR image for each imaging interval. A representative, full-FOV HR image is 

shown in Figure 1d with a typical growing plaque (zoomed inset shown in Figure 1e). A time-lapse HR 

image sequence of a growing plaque compared with the LR images directly captured by the sensor is 

shown in Movie S1. 
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Figure 1. The ePetri device setup. (a) The ePetri device prototype. (b) Image sensor with reservoir. (c1-c3) Viral 

infection and plaque growth on the image sensor. (d) A representative, full field-of-view, high-resolution image with 

(e) a typical growing plaque zoomed in. 

Plaque recognition by image processing 

We designed an image-processing program to automatically detect plaques from time-lapse HR image 

sequences. This algorithm is able to detect newly generated plaques, track the growth of each individual 

plaque, and distinguish different plaques after they contact each other. Each frame was processed based 

on the time-lapse HR image sequence using the results of the previous frames. The program consists of 

six major steps, as illustrated by the flowchart and representative pictures in Figure 2. The dynamic 

results of these steps are shown in Movie S2. The six steps are described in detail as follows: 
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Figure 2. The plaque recognition algorithm structure. 

1. Image loading 

A new frame from the HR image sequence is loaded into the program.  

2. Points detection 

A brightness threshold is set for the image (typically 2.2 times the mean value of the whole image), 

converting the HR image into a binary (0-1) image with only the profiles of the dying cells. The center-

of-mass is extracted from each profile to generate the dying cell positions into our data points. 
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3. Points accumulation 

The detected points in step 2 are combined with the plaque detection results from the previous frame. 

4. Clusters detection 

Considering that a plaque is a cluster of dead cells with high density, we apply a density-based clustering 

algorithm to the data points generated in step 3. The DBSCAN algorithm is used.
10

 This detects clusters 

by gauging the spatial density of the points. Briefly, each point is evaluated by two thresholds. The first 

threshold is Eps, which is the required neighborhood distance between this point and its surrounding 

points. The second threshold is MinPnts, which represents the required number of other points within the 

Eps neighborhood. If there are > MinPnts points within the Eps neighborhood, then this point and all the 

other points within the Eps neighborhood are considered elements of the same cluster. In this way, the 

algorithm evaluates all the points and labels them according to the clusters they belong to. The typical 

values used in our experiments were Eps=150 µm and MinPnts=5.  

5. Noise removal 

After step 4, the points that do not belong to any clusters are considered noise and are removed from the 

current frame. 

6. Plaque Recognition 

The plaque recognition step consists of several sub-steps. First, each current cluster is compared with the 

previously recognized plaques. If it does not have any common points with previous plaques, it will be 

considered a new cluster (this means a new plaque has generated). If it has common points with only one 

previous plaque, it will be labeled the same cluster as the previous one (this means a single plaque is 

growing). If it has common points with multiple previous plaques, these corresponding common points 

will be labeled separately according to each previous plaque (this means multiple plaques are starting to 

contact each other). Second, each un-labeled point in the current cluster is assigned to its nearest labeled 

cluster. After labeling all the points in the current clusters, each cluster was defined as a recognized 

plaque. 

After the last frame is finished, the recognized plaques with insufficient points (typically <20 points) are 

considered false positives and are removed. 

We built a customized MATLAB program for this algorithm. For verification, we manually examined 72 

plaques in five ePetri plaque assay experiments and compared them with the results of our program. The 

plaque recognition accuracy of our program was 93±7% (there were 3±5% plaques unrecognized, and 

2±3% falsely unseparated). 

ePetri plaque assay 

To compare the performance of our ePetri plaque assay method and the conventional multi-well plate 

plaque assay, we grew plaques on both six-well plates and CMOS image sensors (relative scale shown in 

Figure 3a). The RAW 264.7 cells were cultured to ~70% confluence for both groups. The same MNV-1 

sample was used with different dilutions for each method (1:10
7
 dilution for the conventional plaque 

assay, and 1:10
5
 dilution for the ePetri plaque assay). For the conventional plaque assay, cells were 
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stained with neutral red 48 h after infection and the plaques were counted by the naked eye (Figure 2b). 

For the ePetri group, the HR images were taken at 30 min intervals until 32 h after infection (Figure 2c) 

and our plaque recognition program was used to automatically count the number of plaques in the last 

frame (Figure 2d). The plaque titer given by the conventional plaque assay and ePetri plaque assay were 

2.1±0.6 ×10
8
 PFU/ml (SEM, N=4) and 1.9±0.3 ×10

8
 PFU/ml (SEM, N=4) respectively, without 

significant differences, according to the Student’s t-test (P=0.13). It is worth noting that we demonstrated 

a shorter readout time (32 h) compared with the conventional plaque assay (48 h as established in the 

standard protocol
1
), due to the ability of the ePetri plaque assay to recognize plaques from their early 

stages. We will show this in the next section.   

 

Figure 3. Plaque assay experiment. (a) A six-well plate for the conventional plaque assay, compared with a CMOS 

image sensor for the ePetri plaque assay. (b) A representative image of the conventional plaque assay. Manually 

counted plaques were labeled with white squares. (c) A representative image of the ePetri plaque assay (d) with the 

plaques automatically detected.  (e) The calculated viral titer of the conventional plaque assay compared with that of 

the ePetri plaque assay. 

Longitudinal observation of plaque growth 
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In addition to plaque recognition, the ePetri plaque assay method automatically captures a longitudinal 

sequence of cell death events on the entire sensor chip. This means that we can also use the data to 

investigate plaque growth dynamics from their earliest stages. As a demonstration example, we tracked 

the growth pattern of a single plaque (Figure 4). Figure 4a shows the time-lapse images of a growing 

plaque with individual cell death events labeled. Figure 4b shows the same plaque with each cell death 

event colored according to its occurrence. Based on this data, we also generated statistics of cell death 

numbers over time (Figure 4c). 

 

Figure 4. Longitudinal observation of the plaque growth. (a) Time-lapse HR images of a growing plaque with  

individual cell death events labeled. (b) The same plaque with each cell death event colored according to its 

occurrence. (c) Number of cell deaths over time in the plaque. 

Our plaque detection algorithm also gives us the time at which a new plaque appears. As a demonstration 

example, we defined the time of generation of a new plaque as the time at which it was picked up by our 

clustering algorithm, and conducted two experiments to monitor plaque formation events over time 

(Figure 5a). From the histogram of the two experiments (Figure 5b-c), we observed that the peak of 

plaque formation happened 24–26 h after MNV-1 infection, and the time between the formation of early 

plaques and late plaques was approximately 6 h.  
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Figure 5. Dynamics of plaque formation. (a) Plaque formation events over time for two independent experiments. 

(b-c) The histograms showing plaque formation distribution in (b) the first experiment (green curve in a) and (c) the 

second experiment (blue curve in a). 

Demonstration study of viral inhibitor treatment 

We demonstrated the ePetri device in a viral inhibitor study. We selected two previously discovered 

MNV-1 inhibitors. The first inhibitor is 2’-C-methylcytidine (2CMC), which blocks the RNA replication 

pathway.
11

 The second one is neuraminidase, which cleaves terminal sialic acids on the surface of host 

cells, preventing viral attachment to cells.
12, 13

 We included one control group without inhibitors (Figure 

6a1). We used two different concentrations for the 2CMC treatment group (4 µM and 10 µM) and the 

neuraminidase treatment group (1 mU/ml and 2.5 mU/ml). Each treatment was repeated once, and a 

1:(2×10
4
) dilution of a MNV-1 sample was used for all the groups. We monitored each group for 32 h 

after virus infection. To increase the throughput, we ran 2–3 ePetri devices in parallel each time. 

Representative final plaque recognition results for each group are shown in Figure 6a. We then 

investigated the effects of the two inhibitors on the total number of plaques (Figure 6b). In the case of 

2CMC, the plaque number decreased by 40% at a concentration of 4 µM, and no plaques appeared when 

the concentration increased to 10 µM. In the case of neuraminidase, the plaque number decreased by 60% 

at a concentration of 1 mU/ml, but no further decrease was observed at 2.5 mU/ml. Further increase in 

neuraminidase concentration had negative effects on cell growth. Finally, we also examined plaque size 

by defining the radius of a circle with the same area as the plaque, calculated the mean and standard 

deviation of the radius data for each group, and statistically analyzed the data between the groups using 

one-way ANOVA followed by Tukey’s HSD test (Figure 6c). For the 2CMC group, the plaque radius at 4 

µM (106±14 µm, N=19) was significantly smaller than that of the control group (130±15 µm, N=31) with 

P<0.001, and reduced to 0 µm (no plaques) at 10 µM. For the neuraminidase group, the plaque radius was 

also significantly smaller than the control group at 1 mU/ml (102±15 µm, N=9) with P<0.001, but did not 

significantly drop when the dose was increased to 2.5 mU/ml (95±12 µm, N=12), with P=0.677. The 

results suggest that 2CMC is capable of completely inhibiting viral proliferation, whereas neuraminidase 

is not. In this study, we added neuraminidase after viral infection as a proof of concept. However, as 
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previously studied,
12

 the treatment of neuraminidase before viral infection can have a better inhibitory 

effect. We will use our ePetri device to investigate this timing of neuraminidase treatment in our future 

work. 

 

Figure 6. Study of viral inhibitor treatments. (a1-a5) Representative images showing the plaque recognition results 

of (a1) the control group, the 2CMC group at concentrations of (a2) 4 μM, and (a3) 10 μM, and the neuraminidase 

group at concentrations of (a4) 1 mU/ml and (a5) 2.5 mU/ml, 32 h after MNV-1 infection. (b) Number of plaques 

for all the five groups. (c) Means and standard deviations of the plaque radiuses for all the five groups (* P<0.05).  

 

Discussion 

The ePetri device has several intrinsic advantages for plaque analysis. First, its wide FOV supports the 

observation of multiple plaques at the same time. Second, its sub-micron resolution enables much earlier 

identification of a plaque site than conventional means, as well as observation of individual cell death 

events within each plaque. Third, the imaging process can be operated automatically and continuously 

inside the incubator. This not only saves labor and avoids disturbing the sample, but also allows the 

monitoring of the plaque growth process. Fourth, the ePetri device is engineered using mass-producible 

electronic components without optical lenses, making it a low-cost imaging solution. Finally, the ePetri 

device is compact in size (10 × 10 × 10 cm
3 
for our current prototype) and allows multiple devices to be 

run in parallel inside the same incubator, increasing imaging throughput. 

In this study, we selected MNV-1 as our virus model due to its high significance. Norovirus (NoV) is the 

top pathogen causing foodborne illness in the United States and is responsible for more than 23 million 
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infections per year.
14

 So far, little is known about the infection mechanisms of human NoVs and there is 

no specific treatment for human NoV infection because it cannot grow in tissue culture systems. 

Discovered in 2003, MNV-1 is the only member of NoVs that can successfully grow in tissue culture.
15

 

We believe that the ePetri approach can provide more insight into the mechanisms of NoV infection, as 

well as those of other viruses that are conventionally studied by plaque assays.  

We used thresholding to detect virus-induced cell death events in our algorithm. Occasionally, some 

random cell deaths or temporary cell detachment events (such as cell division) were also picked up by the 

thresholding. These data points are considered noise for plaque detection. These noise points are 

randomly generated and sparsely distributed around the whole imaging area. Conversely, the cell deaths 

inside virus plaques have much higher density; therefore, we were able to extract them from the noise by 

applying the density-based clustering algorithm.  

We measured the virus concentration of the same sample using both the ePetri plaque assay and the 

conventional plaque assay in a 6-well plate. We were able to read out the results using the ePetri plaque 

assay at 32 h after infection, whereas we read out the conventional plaque assay by the naked eye 48 h 

after infection, following standard protocols.
1
 The ePetri plaque assay provides high resolution in 

detecting single cell death events; therefore, we were able to recognize plaques when they were still small 

in size, reducing the wait time for the plaque assay.  

We determined the formation time of a plaque by looking at when a cluster was recognized by our 

algorithm. The experiment shows that the peak of plaque formation occurred at 24–26 h after infection, 

and the time between the formation of early plaques and late plaques was ~6 h. This verifies that the 32-h 

monitoring time was enough to cover the formation events of all the plaques. The ~6 h difference between 

the early and late plaques may suggest the heterogeneous nature of our virus sample. This contains rich 

information on viral behavior and is worth further investigation. One future experiment might involve 

retrieving the virus from a single plaque and testing whether plaque formation time can be synchronized. 

Another would be to work on different virus strains and study the variation in their plaque formation time.  

Generally, there are five steps in a virus life cycle: attachment to the host cell membrane, entry into the 

cell, genome replication, protein synthesis, and virus release.
16

 In this study, we demonstrated the 

application of our system on the evaluation of antiviral drugs by choosing two already established virus 

inhibitors: neuraminidase and 2CMC, which inhibit the membrane attachment and RNA replication, 

respectively, of MNV-1. In recent years, many other antiviral drugs targeting different steps of the virus 

life cycle have also been studied. For example, dynasore and nocodazole were reported to inhibit virus 

entry.
17

 WP1130, ribavirin, and simvastatin were reported to suppress virus replication.
18-20

 

Cycloheximide and type I/II interferons inhibit virus protein synthesis.
21, 22

 Oseltamivir and zanamivir 

inhibit virus release from host cells.
16

 The ePetri is a potential powerful tool for studying all these drugs 

and their effects on plaque formation and plaque growth dynamics. 

The conventional plaque assay has several inherent limitations. First, it is time-consuming because plaque 

growth is a slow process and can take several days. Second, many viruses do not kill host cells and 

consequently do not form plaques; therefore, it is not possible to study them using the plaque assay. To 

overcome these limitations, a variation of the plaque assay called the fluorescent focus assay (FFA) was 

developed.
23

 A FFA is similar to a plaque assay except that it uses fluorescently-labeled antibodies 

targeting viral antigens to measure host cell infection; therefore, it can give information on viral spread 
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even before a plaque is formed. In addition, such an assay can directly visualize viruses, so that plaque 

observation is not needed. We have recently developed a wide FOV on-chip fluorescence microscope that 

supports high-resolution fluorescence imaging, and have already demonstrated its use in time-lapse 

imaging of GFP-labeled HeLa cells as well as in the study of anti-cancer drugs.
24, 25

 We believe this 

fluorescence ePetri device will be well-suited for the study of FFA in our future work.  

 

Conclusion 

In this work we applied the ePetri device to viral plaque analysis.  Time-lapse, high-resolution images 

were obtained by the ePetri device at 30-min intervals. A density-based clustering algorithm, DBSCAN, 

was introduced into a customized program for plaque recognition. This plaque recognition program was 

then used for the plaque assay and longitudinal monitoring of plaque formation and growth. We further 

explored potential applications of our device by studying the two viral inhibitors, 2CMC and 

neuraminidase, and observed a difference in their inhibition on plaque growth. We expect that the ePetri 

device can be used for many applications such as the study of virus behavior and the discovery of new 

antiviral drugs. 

 

Experimental section 

Conventional plaque assay 

Conventional plaque assays were conducted by the following standard protocols.
1
 Briefly, RAW 264.7 

cells (~70% confluency) cultured in DMEM were inoculated with various dilutions of the MNV-1 sample 

in six-well plates with each dilution added in two wells (0.5 ml per well). After 1.5 h incubation for 

MNV-1 attachment, the media was removed and a 37°C low melting point agarose solution (1.5% in 

DMEM, 3 ml per well) was added. The plates were placed into a 37°C CO2 incubator for 48 h, then 

stained with 0.02% neutral red solution for 1 h. Visible plaques were counted by the naked eye. The 

number of plaques in both wells at each dilution were added and multiplied by the dilution factor. This 

gives the number of plaque forming units (PFUs) in a 1-ml volume. For example, consider two wells at 

1:10
7
 dilution, if one well has 10 plaques and the other well has 5 plaques, the viral titer is 

10×10
7
+5×10

7
=15×10

7
 PFU/ml. 

The ePetri device for plaque analysis 

The ePetri device was designed based on our previous work
8
 and provided by ePetri Inc. We used 

MT9P031 (2.2 µm pixel, Aptina) for the image sensors and removed their microlens layers by treating 

them in oxygen plasma for 10 min at 80 W. The homemade square plastic reservoir was glued to the 

image sensor using polydimethylsiloxane (PDMS). 

The protocol for viral plaque growth on the image sensor is similar as that used in the conventional plaque 

assay. Briefly, image sensors were pre-treated with trypsin for surface cleaning and better cell adhesion. 

The DMEM solution containing ~10
5
 RAW 264.7 cells was filled into each sensor’s reservoir. After cells 
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grew to ~70% confluence, the media was changed to the diluted MNV-1 solution (typically 20 μl) and a 

coverslip was placed on top of the medium. After 1.5 h incubation for MNV-1 attachment, the coverslip 

and virus solution were removed, and the 37°C low-melting point agarose solution (1.5% in DMEM, 150 

μl) was added. A thin layer of DMEM was overlaid on top of the agarose to prevent evaporation. Sensor 

chips were mounted onto the ePetri devices with a customized PDMS cap placed above the image sensor 

to prevent further evaporation. The systems were placed into the 37 °C CO2 incubator for continuous 

imaging (30 min intervals). 

The viral titer for the ePetri plaque assay was calculated in a similar manner to the conventional plaque 

assay. However, because the reservoir’s area (7.25×7.25 mm
2
) was 2.15 times of the sensor’s imaging 

area (5.70×4.28 mm
2
), the measured virus concentration was multiplied by this factor during calculations. 

For example, consider we use 20 μl MNV-1 solution at 1:10
5
 dilution, if we count 15 plaques, then the 

viral titer is 15÷0.02×10
5
×2.15=16×10

7
 PFU/ml. 

For the experiments in the viral inhibitor study, the protocol remained the same, except that the drug 

(2CMC/neuraminidase) was added to the low-melting point agarose solution before it was overlaid onto 

the cells. 
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