This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Ionization characteristics of amino acids in direct analysis in real time

mass spectrometry

Kanako Sekimoto1, Motoshi Sakakura2, Takatomo Kawamukai2, Hiroshi Hike2, Teruhisa Shiota2, Fumihiko Usui2, Yasuhiko Bando2 and Mitsuo Takayama1

1 Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027 Japan

2 AMR Inc., 13-18 Nakane-2, Meguro-ku, Tokyo, 152-0031 Japan

Author for Correspondence

Present address: Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto Kanazawa-ku, Yokohama, Kanagawa, 236-0027 Japan

Tel: +81-45-787-2216

E-mail: sekimoto@yokohama-cu.ac.jp
Abstract

The positive and negative ionization characteristics of 20 different α-amino acids were investigated in Direct Analysis in Real Time (DART) mass spectrometry. Almost all of the amino acids M were ionized to generate the (de) protonated analytes \([M \pm H]^+\) via proton transfer reactions with the typical background ions \(H_3O^+(H_2O)_n\) and \(O_2^-\) and resonant electron capture by M. The application of DART to amino acids also resulted in molecular ion formation, fragmentation, oxidations involving oxygen attachment and hydrogen loss, and formation of adducts \([M + R]^\) with negative background ions \(R^- (O_2^-, HCO_2^-, NO_2^- and COO(COOH))\), depending on the physicochemical and/or structural properties of the individual amino acid. The relationship between each amino acid and the ionization reactions observed suggested that fragmentation can be attributed to pyrolysis during analyte desorption, as well as excess energy obtained via (de)protonation. Oxidation and \([M + R]^\) adduct formation, in contrast, most likely originate from reactions with active oxygen such as hydroxyl radical \(HO^-\), indicating that the typical background neutral species involved in analyte ionization in DART contain \(HO^-\).
Introduction

The recent development of ambient desorption/ionization (ADI) mass spectrometry offers numerous advantages, including direct analysis of solids and liquids under ambient conditions with little or no sample preparation. For these reasons, ADI sources have become important tools in cleaning validation, forensic analysis, and drug discovery. Although several different types of ADI sources have been developed so far, a large amount of interest has been placed on direct analysis in real time (DART) using a helium plasma source, which is the origin of ADI sources. DART combines separate desorption and ionization processes into a single method. The desorption is carried out using hot helium gases, whereas the ionization goes through an atmospheric pressure chemical ionization (APCI)-like process with reactions involving excited helium. It has been reported that DART is a soft ionization technique forming abundant (de)protonated analytes \([M \pm H]^\pm\) via proton transfer from background ions such as \(H_3O^+(H_2O)_n\) and \(O_2^{-}\) to the analytes \(M\), while analytes with certain specific features can be ionized to form additional analyte ions. For instance, DART ionization of nonpolar compounds such as alkanes leads to the production of analyte ions originating from hydride abstraction, oxygen attachment, or hydrogen loss, instead of \([M \pm H]^\pm\). The mechanism of formation of those analyte ions is not well understood, although the involvement of \(NO^+\), one of the background ions in DART gas flow, has been suggested. A lack of knowledge concerning the ionization characteristics in DART results in difficulty in the interpretation of DART mass spectra, and limits its analytical utility. In order to overcome these issues, it is necessary to investigate the ionization characteristics of DART in detail, i.e., to identify the background ionic and neutral species.
formed in DART sources and to systematically understand the influence of these individual background compounds on analyte ionization.

Herein, the positive and negative ionization characteristics of 20 different α-amino acids were investigated by DART mass spectrometry. The amino acids used have a wide variety of physicochemical and/or structural properties originating from their side chains, including the nonpolarity associated with aliphatic or aromatic character, and the polarity due to the presence of specific functional groups (hydroxyl, amino, carboxyl and thiol groups). All of the amino acids except for arginine were positively and negatively ionized via various different reactions including (de)protonation, molecular ion formation, fragmentation, oxidation, hydrogen loss, and the formation of adducts with negative background ions. The relationship between the physicochemical and/or structural properties of the individual amino acids and ionization reactions observed contributes to the understanding of the formation of background ionic and neutral species and the resulting effects on analyte ionization in DART.
Experimental

All mass spectra were acquired with an LCQ ion-trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with a DART-SVP source (IonSense, Saugus, MA). The DART-SVP source was operated with a needle voltage of 5000 V and an exit grid electrode voltage of 350 V. Helium (He) at 350 °C was used for the DART gas at the factory-preset flow rate (2.5 Lmin⁻¹). The DART source exit was directed toward the orifice of the mass spectrometer, separated by a gap of ≈ 10 mm. The analytes used were the 20 standard α-amino acids (Table 1), purchased from Sigma-Aldrich (Tokyo, Japan). Analyte desorption and ionization was accomplished by an insertion of a 1.5 mm i.d. glass tube containing the analyte in the He gas flow between the DART source exit and the mass spectrometer orifice. The resulting gas-phase analyte ions were introduced into the orifice. The orifice was heated at 275 °C and applied a voltage of 20 V. The ions were focused onto the skimmer and the tube lens and were transported into the ion-trap analyzer through ion guides consisting of a quadrupole, gate lens, octapole and entrance lens. The voltages applied to the skimmer and tube lens were 0 and 50 V, respectively. The applied RF voltages on the quadrupole and octapole were 400 V peak-to-peak. The gate lens regulating the ion injection into the ion-trap analyzer utilized an applied voltage of 16 V, whereas the voltage on the entrance lens for the eventual focusing of the transported ions was 30 V.
Results and discussion

(De)protonation

The positive- and negative-ion DART mass spectra of Asn (Mr 132) shown in Figure 1 are representative examples. The mass spectra show the dominant ion peaks of the (de)protonated analytes [Asn ± H]±, which are the major ion species commonly observed when ionizing various other amino acids. The ion species observed in the DART mass spectra of each of the amino acids are summarized in Table 1. The protonated analytes [M + H]± are most likely produced via proton transfer reactions involving H3O+(H2O)n, the typical positive background ions in DART.4 Proton affinities of analytes M used8 are higher than that of H2O (691.0 kJ mol−1)8 and its clusters (H2O)n, as listed in Table 1.

\[M + H_3O^+(H_2O)_n \rightarrow [M + H]^+ + (H_2O)_{n+1} \] (1)

The reactant ions H3O+(H2O)n can be formed via a Penning ionization to form H2O •+ (reaction 2), due to the energy transfer from an excited He with 19.8 eV excitation energy, He(23S), to H2O having an ionization energy of 12.6 eV, and subsequent reactions involving additional H2O (reactions 3 and 4).

\[\text{He} (2^3S) + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} \cdot ^+ + \text{He} (1^1S) + e_s \] (2)

\[\text{H}_2\text{O} \cdot ^+ + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HO} \cdot \] (3)

\[\text{H}_3\text{O}^+ + (\text{H}_2\text{O})_n \rightarrow \text{H}_3\text{O}^+(\text{H}_2\text{O})n \] (4)

(Figure 1) and (Table 1)
In contrast, the formation of deprotonated analytes [M – H] are most likely attributed to two different processes, i.e., proton transfer from analytes M to the negative background ions \(O_2^{-} \) and resonant electron capture by M. The \(O_2^{-} \) ions are formed via attachment of thermal electrons having kinetic energies at the ambient temperature, i.e., \(e^{-}_{\text{slow}} (\approx 0 \text{ eV}) \), to \(O_2 \) (reaction 5):

\[
O_2 + e^{-}_{\text{slow}} (\approx 0 \text{ eV}) + P \rightarrow O_2^{-} + P \quad (P: N_2, O_2)
\]

(5)

where \(P \) represents common air constituents such as \(N_2 \) and \(O_2 \) corresponding to a third body. Slow electrons \(e^{-}_{\text{slow}} \) with low kinetic energies can be produced via Penning ionization (reactions 2, 10 and 12) and/or the following surface Penning ionization (reaction 6).\(^5\)

\[
\text{He} (2^3S) + \text{surface} \rightarrow \text{He} (1^1S) + \text{surface} + e^{-}_{\text{fast}}
\]

(6)

The electrons formed via reaction 6, \(e^{-}_{\text{fast}} \), are rapidly thermalized by collisions with common air constituents \(P \) (reaction 7).

\[
e^{-}_{\text{fast}} + P \rightarrow e^{-}_{\text{slow}} + P \quad (P: N_2, O_2)
\]

(7)

The collision of \(O_2^{-} \) with analytes M efficiently brings about the formation of \([\text{M – H}]^{-}\) via proton transfer from M to \(O_2^{-} \) (reaction 8), due to higher proton affinity of \(O_2^{-} \) (1477 ± 2.9 kJ mol\(^{-1}\))\(^15\) rather than \([\text{M – H}]^{-}\).\(^9,10\)

\[
\text{M} + O_2^{-} \rightarrow [\text{M – H}]^{-} + \text{HO}_2^{-}
\]

(8)

The slow electrons having kinetic energies over the range of 1 – 1.5 eV, \(e^{-}_{\text{slow}} (1 – 1.5 \text{ eV}) \), can also resonantly attach to analytes M and subsequent dehydrogenation leads to produce \([\text{M – H}]^{-}\) (reaction 9).

\[
\text{M} + e^{-}_{\text{slow}} (1 – 1.5 \text{ eV}) \rightarrow \text{M}^{•-} \rightarrow [\text{M – H}]^{-} + \text{H}^{-}
\]

(9)

The formation of deprotonated amino acids \([\text{M – H}]^{-}\) via reaction 9 has been previously reported...
by numerous studies regarding resonant electron capture and dissociative electron attachment using low energetic electrons. On the basis of those previous studies, the \([M - H]^-\) ions resulting from reaction 9 have carboxylate anion structures occurring via either electron capture into the \(\pi^*\) orbital of the carboxylic group or hydrogen-atom tunneling through the barrier that separates a dipole-supported minimum and repulsive valence state.

In order to confirm whether both proton transfer with \(O_2^{2-}\) (reaction 8) and resonant electron capture (reaction 9) are involved in deprotonation of various analytes in DART, some analytes were ionized in the analyte ionization area under \(N_2\) atmosphere conditions. It can be expected that \(N_2\) atmosphere conditions where few amounts of \(O_2\) are present results in the inhibition in occurrence of reaction 8 involving \(O_2^{2-}\). The mass spectra of Gly, Val, Asp and Phe, arbitrary selected, obtained under \(N_2\) atmosphere conditions certainly showed the ion peaks of deprotonated analytes \([M - H]^-\) for individual analytes \(M\), whose absolute abundances were lower than those observed in normal ambient air conditions (Table S1 in Supplementary Material). These results can evidence the involvement of both reactions 8 and 9 in deprotonation occurring in DART.

Molecular ion formation

Positive-ion DART brought about the formation of molecular cation \(M^{++}\) for almost all the analytes \(M\) whose abundances were quite lower than those of protonated analytes \([M + H]^+\), as shown in Table 1. The \(M^{++}\) formation has been reported in the previous studies of DART to
analyze nonpolar compounds such as dibenzosuberone and n-hexadecane.21 Taking into account
the ionization energies of analytes M used, \(\approx 9\) eV (listed in Table 1),11-13 and the previous
report,21 M \(\cdot^+\) can be formed via Penning ionization involving He\(2\text{S}\) (reaction 10) and/or
charge transfer reaction from \(O_2 \cdot^+\) to M (reaction 11). The \(O_2 \cdot^+\) ion is one of the positive
background ions produced via Penning ionization of \(O_2\) having an ionization energy of 12.07 eV
with He\(2\text{S}\) (reaction 12).21

\[
\begin{align*}
M + \text{He}(2\text{S}) & \rightarrow M \cdot^+ + e_{\text{slow}} + \text{He}(1\text{S}) \quad (10) \\
M + O_2 \cdot^+ & \rightarrow M \cdot^+ + O_2 \quad (11) \\
O_2 + \text{He}(2\text{S}) & \rightarrow O_2 \cdot^+ + e_{\text{slow}} + \text{He}(1\text{S}) \quad (12)
\end{align*}
\]

In contrast, the formation of molecular anion M \(\cdot^-\) in negative-ion DART of a given analyte
M was investigated using the abundances of the ion peak whose \(m/z\) value corresponds to the
molecular mass of M and the isotopes of deprotonate analyte \([M - H]\). The negative-ion mass
spectrum of Asn (Figure 1b) shows the negative ion at \(m/z\) 132 with abundance of 12.0 %
relative to deprotonated Asn \([\text{Asn} - H]\) (RA = 12.0 %). The ion at \(m/z\) 132 corresponds to not
only molecular anion Asn \(\cdot^-\) but also deprotonated Asn \([\text{Asn} - H]\) having one isotope of \(^{13}\text{C}, ^{2}\text{H},
^{17}\text{O}\) or \(^{15}\text{N}\). The calculated RA of the isotope of \([\text{Asn} - H]\) at \(m/z\) 132 is 5.3 %. That is, RA of
Asn \(\cdot^-\) formed in the negative-ion DART is 6.7 %. The other negative-ion mass spectra obtained
(Figures 2, 3 and S1 - 16) indicated that Asp can be ionized as Asp \(\cdot^-\) with RA of 14.6 %. In the
case of Lys and Phe, the ions at \(m/z\) 146 and 165 corresponding to individual M \(\cdot^-\) were detected
at RAs of 6.2 and 6.8 %, respectively (Figures S9 and S13). Because the mass spectra of those
analytes include the ion peaks that are higher in \(m/z\) values than M \(\cdot^-\), the ions at \(m/z\) 146 and 165
may be the fragments from the ions with higher \(m/z\) values as well as M \(\cdot^-\). High resolution
experiments with accurate mass measurement would be useful for further investigation of the molecular anion formation for Lys and Phe.

The formation of M^- of Asn and Asp has been previously observed under low-pressure argon plasma conditions involving low energetic electrons. Taking into account the previous report, molecular anion formation occurring in DART is attributable to resonant capture of thermal electrons $e^\text{slow} (\approx 0 \text{ eV})$ by analytes M and simultaneous removal of excess energy in M^- by third bodies P such as N_2 and O_2 (reaction 13).

$$M + e^\text{slow} (\approx 0 \text{ eV}) + P \rightarrow M^- + P \quad (P: N_2 \text{ and } O_2) \quad (13)$$

It has been previously reported that analytes M having dipole moments larger than the critical magnitudes ($2 - 2.5$ Debye) are able to create so-called dipole-bound or dipole-supported negative ion states and resulting in high efficiency in resonant electron capture. However, the results obtained here, that Asn and Asp can more efficiently capture thermal electrons than other amino acids, cannot be explained by the dipole moments individual amino acids in the global minimum structures. For example, the dipole moment of Asp, 2.28 Debye, is equal to that of Thr, which can inefficiently capture thermal electrons. In order to understand why Asn and Asp have particularly high efficiency in resonant electron capture, further experimental and theoretical studies will be required.

Fragmentation

Ionization Glu and Gln, acidic and amidic amino acids respectively, involved significant
fragmentation, in which the common neutral species are lost under positive- and negative-ion modes and resulting in the formation of the fragment ions with RAs higher than about 10%.

Figure 2 shows the positive- and negative-ion DART mass spectra of Glu (Mr 147). The mass spectra include the ion peaks of not only the (de)protonated Glu [Glu ± H]^+ but also fragment ions corresponding to [Glu ± H – H_2O]^+. It should be noted that in Figure 2, H_2O loss fragments were observed in both positive- and negative-ion modes, indicative of the occurrence of H_2O loss, independent of ionization. It is well-known that Glu easily forms pyroglutamic acid (PGA; Mr 129) due to intramolecular thermal dehydration below 400 °C. Taking into account the temperature of He gas flow used, 350 °C, the formation of [PGA ± H]^+ (corresponding to [Glu ± H – H_2O]^+) in DART is most likely attributable to the following processes:

(a) Initial loss of H_2O from Glu to form PGA during the thermal desorption process in the He gas stream (reaction 14)

(b) Subsequent formation of (de)protonated PGA [PGA ± H]^+ via proton transfer reactions of PGA with H_3O^+(H_2O)_n and O_2^- (reactions 15 and 16) and resonant electron capture by PGA (reaction 17)

\[
\begin{align*}
\text{PGA} + \text{H}_3\text{O}^+(\text{H}_2\text{O})_n & \rightarrow [\text{PGA} + \text{H}]^+ + (\text{H}_2\text{O})_n \\
\text{PGA} + \text{O}_2^- & \rightarrow [\text{PGA} - \text{H}]^+ + \text{HO}_2 \\
\text{PGA} + e^{-}_{\text{slow}} (1 - 1.5 \text{ eV}) & \rightarrow \text{PGA}^{\cdot*} \rightarrow [\text{PGA} - \text{H}]^+ + \text{H}^+
\end{align*}
\]
Ionization of Gln led to the fragment ions of (de)protonated Gln \([\text{Gln} \pm H]^+\) with NH\(_3\) loss, \([\text{Gln} \pm H – \text{NH}_3]^+\), which have the same \(m/z\) values as \([\text{PGA} \pm H]^+\) corresponding to the fragment ions for Glu (Figure S8 Table 1). Taking into account the pyrolysis of Gln, it can be presumed that the fragmentation processes involved in DART ionization of Gln are similar to those of Glu described above. That is, Gln can initially cyclize to pyroglutamic acid (PGA) with loss of NH\(_3\) during thermal desorption (reaction 18),\(^{23}\) resulting in the formation of (de)protonated PGA \([\text{PGA} \pm H]^+\) via reactions 15 – 17.

\[
\begin{align*}
\text{Gln} & \quad \xrightarrow{\text{NH}_3} \quad \text{PGA}
\end{align*}
\]

\text{(18)}

DART of the other amino acids brought about the formation of some fragment ions, i.e., protonated Tyr with CO\(_2\) loss \([\text{Tyr} + H – \text{CO}_2]^+\) (Figure 3), protonated Asp with H\(_2\)O loss \([\text{Asp} + H – \text{H}_2\text{O}]^+\) and deprotonated Asp with NH\(_3\) loss \([\text{Asp} – H – \text{NH}_3]^–\) (Figure S10), whose RAs were lower than 10 %. Neutral species lost during the fragmentation in case of Tyr and Asp are changed with varying the polarity of ionization, which suggests that those fragmentations occur due to excess energy obtained via (de)protonation. The results obtained suggest, therefore, that the fragmentation occurring in DART is most likely attributable to both pyrolysis during thermal desorption and excess energy obtained via ionization reactions.
Oxidation

DART ionization resulted in the formation of (de)protonated analytes with the addition of one and/or two oxygens, \([M \pm H + nO]^+\) \((n = 1, 2)\), for sulfur-containing, aromatic, and aromatic heterocyclic amino acids such as Met, Phe, Tyr, Trp and His (see Figure 3 and Table 1). It has been previously reported that these five amino acids can be easily oxidized with oxygen attachment due to hydroxyl radical \(\text{HO}^\cdot\) as a strong oxidizing species, formed in ozonated solutions\(^{24-26}\) or via Fenton reactions and/or radiolysis in aqueous solutions.\(^{27}\) Scheme 1 shows oxygen addition products \([M + nO]\) of five amino acids M resulting from oxidation by \(\text{HO}^\cdot\), on the basis of the previous reports.\(^{25-27}\) The oxidation of Met with \(\text{HO}^\cdot\) results in the formation of sulfoxide\(^{25-27}\) (Scheme 1a). Reactions of \(\text{HO}^\cdot\) with the aromatic rings in Phe and Tyr lead to the addition of \(\text{HO}^\cdot\) to the rings, and subsequent reactions of the radical species with oxygen generate 2-amino-3-(hydroxyphenyl)propanoic acid\(^{27}\) and dihydroxyphenylalanine,\(^{25,27}\) corresponding to the monoxides of Phe and Tyr, respectively (Schemes 1b and c). It has been reported that aromatic amino acids are oxidized to form quinones, e.g., 2-amino-3-(3,4-dioxo-cyclohexa-1,5-dienyl)-propanoic acid which is a quinone structural oxidation product for Tyr.\(^{26}\) However, no observation of ions related to quinones in the mass spectra of Phe and Tyr (Figures S13 and 3) indicates less occurrence of quinone formation in DART. Trp and His can be oxidized at the conjugated double bond moiety with \(\text{HO}^\cdot\) to form oxindole-3-alanine ([Trp + O]), \(N\)-formylkynurenine ([Trp + 2O]) and 2-oxo-histidine ([His + O]) (Schemes 1d and e). The oxidation reactivity for individual amino acids M can be estimated using relative abundances of \([M \pm H + nO]^+\) listed in Table 1. The reactivity order obtained here
is Trp > Met > Phe > Tyr > His > other amino acids ≈ 0. This order is in agreement with that reported by Kotiaho et al. using ozonated solutions with pH 5.8: Met > Trp > Tyr > His > other amino acids. In the case of higher pH conditions, oxidation of Cys to form trioxide products [Cys + 3O] proceeds most dominantly. Taking into account the results obtained, the oxidation with oxygen attachment reactions occurring in DART most likely originate with HO⁻ in the ionization area under relatively acidic conditions.

(Figure 3) and (Scheme 1)

Hydrogen loss

In negative-ion DART, deprotonated analytes with two hydrogen loss, [M – 2H – H]⁻, were observed when analyzing Gly, Ala, Val, Leu, Ile, Ser, Thr, Asn, Cys, Met and Phe, which have aliphatic or non-ionic side chains (see Figure 1 and Table 1). The peak abundances from [M – 2H – H]⁻ were rather low compared to the abundances of [M – H]⁻. Such [M – 2H – H]⁻ ions have also been observed in the negative-ion DART of aliphatic compounds such as hexanes, heptanes, cyclohexane and hexatriacontane, although the precise mechanism of the 2H loss reactions in DART and its dependence on the structural properties of the analytes have not yet been clarified. It has been previously reported that deprotonated Ser in aqueous solution with HO⁻ and O₂ loses two hydrogens from the backbone of Ser via sequential oxidation reactions, as shown in Scheme 2. This scheme could be applied to the reactions observed here, i.e., the
gas-phase 2H loss from deprotonated analytes for various amino acids including Ser. In contrast, the ion peaks of \([M - 2H - H]^+\) have been observed in the mass spectra of Gly and Val resonantly capturing low energetic electrons \((\approx 1.5 \text{ eV})\).17,20 It is likely, therefore, that the 2H loss reactions occurring in DART can be interpreted in terms of alternative oxidation processes due to HO\(^-\) and/or involvement of slow electrons \(e_{\text{slow}}^-(\approx 1.5 \text{ eV})\) formed via reactions 2, 7, 10 and 12.

(Scheme 2)

Formation of adducts with negative background ions

All of the amino acids \(M\), except for acidic and amidic amino acids such as Asp, Glu and Gln, formed negative ion adducts \([M + R^-]\) with background ions \(R^-\), such as \(O_2^- (m/z 32)\), \(HCO_2^- (m/z 45)\), \(NO_2^- (m/z 46)\) and/or \(COO^-(COOH) (m/z 89)\). Those ions \(R^-\) are typical negative backgrounds formed in DART. The \(COO^-(COOH)\) ion can be observed in the negative-ion mass spectra of Tyr (Figure 3b), whereas \(O_2^-\) and \(NO_2^-\) are included in a DART mass spectrum of negative background ions reported by Cody et al.7 The adduct ions \([M + R^-]\)

were most likely formed via three-body reactions with a third body \(P\) such as \(N_2\) or \(O_2\).

\[
M + R^- + P \rightarrow [M + R^-] + P \quad (P: N_2, O_2) \quad (15)
\]

The adduct ions \([M + R^-]\) observed are summarized in Table 1. Table 1 shows that whether \([M + R^-]\) are formed or not varies with each combination of \(R^-\) and \(M\), which are not dependent upon
the chemical properties of \(M \), such as whether the analyte is aliphatic or aromatic, or has certain functional groups. The results obtained suggest that the formation of the \([M + R]\) adducts is attributed to the affinity or ability of complexation between individual \(R \) and \(M \), although the factors determining its affinity or ability can not be readily proven. The similar phenomena have been also observed in atmospheric pressure corona discharge ionization (APCDI).31,32

Ionization characteristics of DART

The notable reactions observed in DART were oxidations involving oxygen attachment and hydrogen loss. As described above, those oxidation processes in DART are most likely attributable to reactions with \(\text{HO}^- \). It can be presumed, therefore, that the analyte ionization area between the DART source exit and the mass spectrometer orifice includes a number of active oxygens such as \(\text{HO}^- \). This hypothesis is supported by the appearance of \(\text{HCO}_2^- \), \(\text{HCO}_4^- \) and \(\text{COO}^-(\text{COOH}) \) as typical negative background ions. It has been found in previous studies of kinetics and atmospheric pressure DC negative corona discharges that the formation of \(\text{HCO}_2^- \), \(\text{HCO}_4^- \) and \(\text{COO}^-(\text{COOH}) \) in the discharge area is attributable to discharge byproducts such as \(\text{O}_3 \) and \(\text{HO}^- \), as well as \(\text{CO} \) originating from electrons having energy between 5 and 10 eV.31,33

Taking those previous studies into account, Figure 4 shows the proposed sequential reactions for the formation of \(\text{O}_3 \), \(\text{HO}^- \), \(\text{CO} \) and the resulting negative background ions in DART involved excited \(\text{He} \), \(\text{He}(2^3\text{S}) \) having 19.8 eV, as an energy source. The elementary processes shown in Figure 4 are summarized in Table 2. Collisions of \(\text{He}(2^3\text{S}) \) with \(\text{O}_2 \) can occur homolytically and
heterolytically in terms of bond dissociation to form an O atom in a ground-level triplet state, O(^3P), and the O⁰ ion, respectively (reactions a and e in Figure 4).34 The oxygen atom O(^3P) can combine rapidly with O₂ to generate ozone O₃ (reaction b in Figure 4),34 whereas O⁰ ion reacts with H₂O resulting in the formation of HO⁻ ion (reaction f in Figure 4).35 The reaction of HO⁻ with O₃ brings about the formation of HCO₄⁻ via HO₂⁻ as an intermediate further reacting with CO₂ (reactions h and i in Figure 4).26,36 It has been reported that O₃ molecules can dissociate with an energy above 3.87 eV to produce an O atom in an excited singlet state, O(^1D),34 which is likely achieved involving He(2^3S) (reaction c in Figure 4). Subsequent reaction of O(^1D) with H₂O leads to the formation of HO⁻ (reaction d in Figure 4).34 The radical species HO⁻ can also be formed via reactions forming HO⁻ and H₃O⁺ (reactions f and r in Figure 4).35,4 The formation of COO⁻(COOH) and HCO₂⁻ most likely originates from an association reaction of HO⁻ with CO (reaction j in Figure 4).37 The CO can occur via the dissociation of CO₂ with an energy above 8.3 eV (reaction t in Figure 4).41 It is most likely that the sequential reactions shown in Figure 4 can occur inside a DART source, and the resulting HO⁻ are introduced into the analyte ionization area by the He gas flow, independent of the polarity of the voltage applied to the grid electrode of the DART source exit. Therefore, the oxidation reactions due to HO⁻ can occur easily in both positive- and negative-ion modes.

(Figure 4) and (Table 2)

Based on these results, the ionization characteristics in DART can be summarized as follows. The thermal desorption of condensed-phase analytes, M_(solid), results in the formation of
gas-phase analytes, \(M_{\text{gas}} \), and fragments \([M – m]_{\text{gas}}\) due to pyrolysis. The resulting gaseous species \(M_{\text{gas}} \) and \([M – m]_{\text{gas}}\) are ionized as \([M \pm H]^{\pm}\) and \([M – m \pm H]^{\pm}\) via (de)protonation reactions involving the typical background ions \(\text{H}_3\text{O}^{+}(\text{H}_2\text{O})_n \) and \(\text{O}_2^{-} \) and slow electrons \((1 – 1.5 \text{ eV})\). Deprotonated analytes \([M \pm H]^{\pm}\) having excess energies can occur fragmentation with loss of neutral species \(m \) to form \([M – m \pm H]^{\pm}\). The species \(M_{\text{gas}} \) can also react with \(\text{He}(2^3\text{S}) \), \(\text{O}_2^{1+} \) and thermal electrons \((\approx 0 \text{ eV})\) and several negative background ions \(\text{R}^{-}(\text{O}_2^{-}, \text{HCO}_2^{-}, \text{NO}_2^{-} \) and \(\text{COO}^{-}(\text{COOH}) \)) to product molecular ions \(M^{\pm} \) and adduct ions \([M + R]^{-}\), respectively. In contrast, the analytes which tend to be oxidized by \(\text{HO}^{-} \) can be ionized as (de)protonated analytes with \(\text{O}^{-} \) attachment and/or \(2\text{H} \) loss, i.e., \([M + n\text{O} \pm H]^{\pm}\) and/or \([M – 2\text{H} – H]^{\pm}\). The ionization processes occurring in DART and the resulting product ion species are shown in Figure 5.

(Figure 5)

Conclusions

The positive and negative ionization characteristics of 20 different \(\alpha \)-amino acids were investigated in Direct Analysis in Real Time (DART) mass spectrometry. All of the amino acids except for \(\text{Arg} \) were ionized via various reactions depending on the physicochemical and/or structural properties of the individual amino acids, as follows:

1) (De)protonation for almost all of amino acids except for \(\text{Arg} \) via proton transfer
reactions with the typical background ions $\text{H}_3\text{O}^+\text{(H}_2\text{O})_n$ and $\text{O}_2^- \cdot$ and resonant electron capture by M.

2) Molecular cation formation for almost all of amino acids except for Arg.

3) Molecular anion formation for the specific amino acids such as Asn and Asp.

4) Pyrolysis for Glu and Gln.

5) Fragmentation for Tyr and Asp due to excess energy obtained via ionization reactions.

6) Oxygen attachment for sulfur-containing, aromatic and aromatic heterocyclic amino acids.

7) Hydrogen loss for aliphatic or non-ionic amino acids.

8) Attachment of negative background ions R \cdot (O$_2^-$, HCO$_2^-$, NO$_2^-$ and COO$^-$(COOH)) for almost all of the amino acids to form [M + R]$^-$. Oxygen attachment and hydrogen loss can be interpreted as oxidation processes involving active oxygens such as hydroxyl radical HO$^\cdot$. The results suggest, therefore, that analyte ionization in DART can be oxidatively influenced by HO$^\cdot$.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) (23550101 and 24619005) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References

2006, 128, 5506-5515.

34. D. J. Jacob, Introduction to Atmospheric Chemistry, 1st edn., pp. 163-171, Princeton

Legends of Figures, Tables and Schemes

Figure 1. (a) Positive- and (b) negative-ion DART mass spectra of L-asparagine (Asn). A_{BP} represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.

Figure 2. (a) Positive- and (b) negative-ion DART mass spectra of L-glutamic acid (Glu). A_{BP} represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.

Figure 3. (a) Positive- and (b) negative-ion DART mass spectra of L-tyrosine (Tyr). A_{BP} represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.

Figure 4. Proposed sequential reactions for the formation of $O_3\cdot$, $OH\cdot$, CO and background ions such as $H_3O^+\cdot(H_2O)_n$, $O_2\cdot^-$, $HCO_2\cdot$, $HCO_4\cdot$ and $COO\cdot(COOH)$ in DART using He gas.

Figure 5. Summary of the ionization behavior in DART.

Table 1. Ion species and their relative abundances observed in the DART mass spectra of individual amino acids (Figures 1-3 and S1-16).
Table 2. Elementary processes for the formation of O\textsubscript{2}, OH−, CO and background ions including H\textsubscript{3}O+(H\textsubscript{2}O\textsubscript{n}), O\textsubscript{2}*, HCO\textsubscript{2}*, HCO\textsubscript{4}*, and COO−(COOH) in DART using He gas.

Scheme 1. Oxygen addition products of (a) methionine (Met), (b) phenylalanine (Phe), (c) tyrosine (Tyr), (d) tryptophane (Trp) and (e) histidine (His).

Scheme 2. Reaction of deprotonated amino acids with HO− and O\textsubscript{2} to lose two hydrogens.
Figure 1. (a) Positive- and (b) negative-ion DART mass spectra of L-asparagine (Asn). A_{BP} represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.
Figure 2. (a) Positive- and (b) negative-ion DART mass spectra of l-glutamic acid (Glu).

A_{BP} represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.
Figure 3. (a) Positive- and (b) negative-ion DART mass spectra of L-tyrosine (Tyr). \(A_{BP} \) represents the absolute abundance (arbitrary units) of the base peak in each mass spectrum.
Figure 4. Proposed sequential reactions for the formation of O$_3$, OH$^-$, CO and background ions such as H$_3$O$^+$(H$_2$O)$_n$, O$_2$ $^\cdot$, HCO$_2^-$, HCO$_3^-$ and COO$^-(COOH)$ in DART using He gas.
Figure 5. Summary of the ionization behavior in DART.
Table 2. Elementary processes for the formation of O₃, OH⁻, CO and background ions including H₃O⁺(H₂O)ₙ, O₂⁻, HCO₂⁻, HCO₄⁻ and COO⁻(COOH) in DART using He gas.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ + He(2²S) → O²⁺ + O²⁻ + He(1⁴S)</td>
<td>34</td>
</tr>
<tr>
<td>(X¹⁺)P + O₂ + P → O₂ + P</td>
<td>34</td>
</tr>
<tr>
<td>O₂ + He(2²S) → O²⁻ + O₂⁻ + e⁺_{slow} + He(1⁴S)</td>
<td>-</td>
</tr>
<tr>
<td>O²⁻ + H₂O → 2HO⁻</td>
<td>34</td>
</tr>
<tr>
<td>O⁺ + H₂O → HO⁺ + HO⁺</td>
<td>35</td>
</tr>
<tr>
<td>HO⁻ + e⁺_{slow} + P → HO⁻ + P</td>
<td>-</td>
</tr>
<tr>
<td>HO⁻ + O₂ → HO₂⁻ + O₂</td>
<td>26</td>
</tr>
<tr>
<td>HO₂⁻ + CO₂ + P → HCO₂⁻ + P</td>
<td>36</td>
</tr>
<tr>
<td>HO⁻ + CO → COOH</td>
<td>37</td>
</tr>
<tr>
<td>2COOH → (COOH)₂</td>
<td>37</td>
</tr>
<tr>
<td>(COOH)₂ → HCOOH + CO₂</td>
<td>37, 38</td>
</tr>
<tr>
<td>(COOH)₂ + A⁻ → COO⁻(COOH) + H₂</td>
<td>-</td>
</tr>
<tr>
<td>HCOOH + A⁻ → HCO₂⁻ + H₂</td>
<td>-</td>
</tr>
<tr>
<td>O₂ + e⁺_{slow} + P → O₂⁻ + P</td>
<td>39, 40</td>
</tr>
<tr>
<td>surface + He(2²S) → surface + e⁺_{fast} + He(1⁴S)</td>
<td>4</td>
</tr>
<tr>
<td>e⁺{fast} + P → e⁺{slow} + P</td>
<td>-</td>
</tr>
<tr>
<td>H₂O + He(2²S) → H₂O⁻ + e⁺_{slow} + He(1⁴S)</td>
<td>4</td>
</tr>
<tr>
<td>H₂O⁻ + H₂O → H₃O⁺ + HO⁻</td>
<td>4</td>
</tr>
<tr>
<td>H₂O⁻ + (H₂O)ₙ → H₃O⁺ (H₂O)ₙ</td>
<td>4</td>
</tr>
<tr>
<td>CO₂ + He(2²S) → CO + O + He(1⁴S)</td>
<td>41</td>
</tr>
</tbody>
</table>

P: third body (N₂ and O₂).
A⁻: Negative ion which has a higher proton affinity than COO⁻(COOH) and HCO₂⁻.
Scheme 1. Oxygen addition products of (a) methionine (Met), (b) phenylalanine (Phe), (c) tyrosine (Tyr), (d) tryptophane (Trp) and (e) histidin (His).

Scheme 2. Reaction of deprotonated amino acids with HO\(^{-}\) and O\(_2\) to lose two hydrogens.
Table 1. Ion species and their relative abundances observed in the DART mass spectra of individual amino acids (Figures 1-3 and S1-16).

<table>
<thead>
<tr>
<th>Analyte (Mr)</th>
<th>Positive ions (relative abundances [%])</th>
<th>Negative ions (relative abundances [%])</th>
<th>Relative abundance of the negative ion whose m/z having one isotope of C, H, N.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protonation</td>
<td>Fragmentation</td>
<td>Oxidation</td>
</tr>
</tbody>
</table>

Note: Relative abundance values are observed, *relative to the absolute mass ratio of each molecule in Doubly charged ions.**
Table 1. Continued.

<table>
<thead>
<tr>
<th>Analyte (M)</th>
<th>Proton affinities of M and ([M + H]^+) (kJ mol(^{-1}))</th>
<th>Attachment of negative background ions</th>
<th>Relative abundances [%]</th>
<th>Negative ions (relative abundances [%])</th>
<th>Removal of molecular anion</th>
<th>Protonation</th>
<th>Molecular ion formation</th>
<th>Fragmentation</th>
<th>Oxidation</th>
<th>Deprotonation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{L-Methionine (Met: Mr 149)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (8.3)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (8.3)</td>
<td>-</td>
<td>20 [M + H + O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + H(^-)](^+) (13.9)</td>
</tr>
<tr>
<td>(\text{L-Cysteine (Cys: Mr 121)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (9.5)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (9.5)</td>
<td>-</td>
<td>20 [M + H + 2O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + 2O(^-)](^+) (13.9)</td>
</tr>
<tr>
<td>(\text{L-Phenylalanine (Phe: Mr 165)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (8.7)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (8.7)</td>
<td>-</td>
<td>20 [M + H + O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + H(^-)](^+) (13.9)</td>
</tr>
<tr>
<td>(\text{L-Tyrosine (Tyr: Mr 181)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (10.0)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (10.0)</td>
<td>-</td>
<td>20 [M + H + O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + H(^-)](^+) (13.9)</td>
</tr>
<tr>
<td>(\text{L-Proline (Pro: Mr 115)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (2.9)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (2.9)</td>
<td>-</td>
<td>20 [M + H + 2O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + 2O(^-)](^+) (13.9)</td>
</tr>
<tr>
<td>(\text{L-Histidine (His: Mr 155)})</td>
<td>(\text{HCO}_2)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (4.8)</td>
<td>-</td>
<td>[M + HCO(_2)](^+) (4.8)</td>
<td>-</td>
<td>20 [M + H + O(^-)] (100)</td>
<td>-</td>
<td>-</td>
<td>[M + HCO(_2) + H(^-)](^+) (13.9)</td>
</tr>
</tbody>
</table>

*Relative abundances of the negative ions whose \(m/z\) corresponds to the molecular mass of analyte M indicated that of [M - H\(^-\)] for nonpolar compounds.\(^{(a)}\)
Analytes in DART can be oxidized by hydrogen radicals HO^- via oxygen attachment and hydrogen loss. (17 / 20 words)