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Abstract DOI: 10.1039/D55C05078B

Ethylene dimerization is a critical industrial process traditionally catalyzed by
homogeneous systems employing cocatalysts or solvents. Although heterogeneous
catalysts show potential to circumvent these limitations, they often exhibit low activity and
limited selectivity toward 1-butene. In this work, a transition-metal-confined FAU zeolite
catalyst featuring precisely defined, coordinatively unsaturated Ni sites and abundant
acidic functionalities, is explored for the reaction. This unique catalyst, denoted as
H-Ni@Y, demonstrates remarkable ethylene dimerization performance without the need
for cocatalysts or additive activators. In a fixed-bed reactor, an exceptional I-butene
formation rate of 4.28 x 10° h'! and high 1-butene selectivity of 83.6% can be achieved
with H-Ni@Y catalyst. Comprehensive characterization results and DFT calculations
elucidate the significant influence of Brensted acidity on the catalytic performance,
revealing the in situ-generated Ni-alkyl species as the active sites. The reaction proceeds
via the Cossee-Arlman mechanism, facilitated by dynamic proton transfer processes. These
findings provide valuable insights into the rational design of heterogeneous catalysts for

industrially relevant ethylene dimerization.
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1. Introduction DOI: 10.1039/D5SC05078B
1-Butene, an essential petroleum-derived chemical within the linear a-olefins family,
is extensively utilized as an intermediate in the manufacture of linear low-density and
high-density polyethylene.! ? Ethylene dimerization remains the primary industrial route
for synthesizing 1-butene, exemplified by commercial processes such as the IFP-SABIC
(Ti-based Alphabutol), Phillips (Ni-based) and DOW (triethyl aluminum-based)
technologies.> Although homogeneous catalysts employed in these processes have
achieved high catalytic activity, they exhibit notable drawbacks, including difficult product
separation, complex catalyst recycling, solvent dependence, and, more significantly, the
necessity for expensive alkylaluminum cocatalysts like methylaluminoxane (MAO) or
trimethylaluminum.*® Driven by green chemistry principles (e.g., cocatalyst/solvent-free
operation), heterogeneous catalysts have gained attention as viable alternatives. Prominent
examples include (i) metal-organic frameworks (MOFs),” (ii) oxide-supported immobilized
metal complexes® and (iii) transition metal containing solid acid material such as zeolites.’
Nevertheless, categories (i) and (ii) generally require cocatalysts and involve intricate
preparation and regeneration procedures, thereby limiting their large-scale

implementation.'% !!

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Zeolites, as the classic solid acids widely employed industrially, can effectively host

metal ions within their matrix, creating coordinated metal centers active for ethylene
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dimerization.'>!> Ni-modified zeolites containing acid sites have exhibited significant

(cc)

potential for ethylene dimerization.!®!® However, current Ni-zeolite catalysts generally
display inferior 1-butene selectivity and substantially lower activity compared to optimized
homogeneous Ni catalysts, restricting their practical use. In our recent work,'” a simple
two-step ion-exchange strategy was developed to synthesize Ni-Mg-Y zeolites as a
high-performance catalyst in ethylene dimerization without any additives, achieving
state-of-the-art performance among heterogeneous systems. This method strategically
employed alkali metal ions (Mg?") at Site I, promoting Ni** incorporation at Site II
(Scheme S1), thus optimizing the catalytic coordination environment. The dynamic

hydrogen transfer between ethylene/alkyl intermediates and zeolite framework
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significantly contributes to catalytic activity, effectively mimicking the role of cocatadystsscoso7ss

in homogeneous systems. Hypothetically, zeolites abundant in Brensted acid sites (e.g.,
Ni-H-Y) could enhance hydrogen transfer processes and ethylene dimerization efficacy
relative to Ni-Mg-Y; however, the H" exchange does not similarly position Ni** at Site IT
using this method.

Herein, a hydrothermal synthesis route was employed to prepare Na-Ni@Y zeolites
with Ni positioned exclusively at Site II, followed by NH*" ion exchange to yield H-Ni@Y
zeolites enriched in Brensted acid sites. The resultant H-Ni@Y catalyst demonstrated
superior catalytic performance, achieving a turnover frequency (TOF) of 4.28x10° h'! and
83.6% selectivity toward I-butene, surpassing Ni-Mg-Y. Detailed spectroscopic
characterization results and DFT calculations on the well-defined H-Ni@Y catalyst
provided insights into the reaction mechanism, clearly establishing the reaction pathway

for additive-free ethylene dimerization to 1-butene.

2. Results and Discussion
2.1 Characterization of H-Ni@Y

A typical ligand-protected hydrothermal method was employed to encapsulate Ni
complexes within the faujasite (FAU) zeolite framework, followed by introducing
additional acidic sites through a simple post ion exchange process (Figure 1a).
Coordinated Ni species were initially confined within the sodalite (SOD) cages, with
subsequent calcination inducing thermally driven migration of Ni ions to Site II within the
six-membered rings of the SOD cages, enabling selective stabilization at their most
energetically favorable sites.?%2! The well-defined Ni sites in H-Ni@Y, achieved via in-situ
synthesis, are essential for elucidating the reaction mechanism and controlling product
selectivity, a level of precision unattainable through conventional ion exchange methods.
Ion exchange of H' cations in the FAU framework with ammonium acetate (NHsAc)
solution resulted in NH4-Ni@Y, yielding protonated H-Ni@Y upon calcination in air.??
X-ray diffraction (XRD, Figure S1), scanning electron microscopy (SEM, Figure 1b and

Figure S2), and high-resolution transmission electron microscopy (HR-TEM, Figure 1c)
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confirmed the successful synthesis of H-Ni@Y with characteristic FAUbdopobogysscosozss
Energy-dispersive X-ray spectroscopy (EDS, Figure 1d), mapping scans (Figure 1e), and

line scans (Figures 1f and 1g) revealed the uniform dispersion of isolated Ni species
within the H-Ni@Y zeolite. The Ni loading in H-Ni@Y was determined to be 2.96% (XRF,

Table S1). H-Ni@Y exhibited typical microporous characteristics, as evidenced by type I
adsorption isotherms, total surface area of 415.8 cm? g! (Figure S3, Table S2) and an
average pore diameter of approximately ~7 A (Figure S4).> Thermogravimetric analysis
coupled with differential scanning calorimetry (TG-DSC, Figure SS) of H-Ni@Y in the
flowing air revealed the complete removal of organic ligands at below 600 K.

Notably, H-Ni@Y presented a characteristic hydrogen consumption peak at about
1010 K in the hydrogen temperature-programmed reduction profiles (H>-TPR, Figure S6),
markedly different from the those of H-Ni-Y synthesized by conventional ion exchange
and Ni/HY prepared by impregnation, indicating the uniform distribution and superior
stability of Ni ions in H-Ni@Y.?! The integrated differential phase contrast scanning
transmission electron microscopy (iDPC-STEM) images (Figure 1h) of H-Ni@Y provided
direct evidence for the uniformly dispersion of isolated Ni within the FAU matrix, showing

the atomically dispersed Ni species positioned at the interfaces between the sodalite cages

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

and supercages (Site II), which was consistent with the subsequent X-ray absorption

spectroscopy (XAS) results.
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Figure 1. Synthesis and characterization of H-Ni@Y. (a) Fabrication process of FAU zeolites and
schematic of Ni occupancy in H-Ni@Y; (b) SEM image, (¢) HR-TEM and enlarged view of selected
region, (d) EDS analysis (the insert was the element dispersive spectrum), (¢) EDS mappings, (f) line

scan (the red arrow indicated the line scan position), and (h) iDPC-STEM images of samples.
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The Ni coordination environment significantly influenced the catalytic performance.
The X-ray photoelectron spectroscopy (XPS, Figure S7) confirmed the chemical
composition and electronic state of Ni species in Ni-containing zeolites, revealing a Ni
2p32 binding energy value of 856.4 eV for H-Ni@Y, higher than that of NiO according to
literature.?* It indicated the existing states of Ni** species and the electron transfer from Ni
to the zeolite framework.”® X-ray absorption spectroscopy (XAS), including X-ray
absorption near-edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS), provided detailed insights into the electronic structure and local coordination
environment of Ni. The XANES spectrum of H-Ni@Y displayed a white line peak near
NiO (Figure 2a), confirming the +2 oxidation state and interactions between Ni and
framework oxygen atoms, consistent with XPS results. The pre-edge peaks (8333-8335 eV)
for Na-Ni@Y (Figure S8) and H-Ni@Y (Figure 2a) were notably more intense compared
to Ni foil and NiO, further supporting Ni** coordination.?® Fourier-transform (FT)
k3-weighted R-space EXAFS spectrum of H-Ni@Y (Figure 2b and Table S3) prominently
featured a peak at 2.06 A contributed to the first shell of Ni-O/C scattering path, with an

average coordination number of approximately 3.8 (Figure 2e and Table S3).2h 27 A

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

secondary peak observed near 2.96 A can be attributed to second-shell interactions

involving Si or Al atoms, indicating the Ni-O-Si or Ni-O-Al interactions (Figure 2¢-2e and

Open Access Article. Published on 14 October 2025. Downloaded on 10/16/2025 6:35:15 AM.

Table S3). Analogously, the wavelet-transformed (WT) EXAFS oscillations of Ni foil, NiO,

(cc)

and H-Ni@Y (Figure 2f-2h) provided further information about the R- and k-space
resolutions of the scattering atoms, the WT EXAFS counter plots exhibited an intensity
maximum at about 4.5 Al in k-space, according to the Ni-O path, without Ni-Ni paths
detected. Collectively, these findings, along with H>-TPR data, conclusively indicate the

formation of four-coordinated Ni** species confined within the FAU zeolite matrix.
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Figure 2. XAS characterization of H-Ni@Y sample. X-ray absorption spectroscopy analyses of
H-Ni@Y zeolite. (a) Ni K-edge XANES spectra of H-Ni@Y, NiO, and Ni foil; (b) FT EXAFS spectra
of H-Ni@Y, NiO, and Ni foil; FT EXAFS fitting spectra of (¢) Ni foil, (d) NiO, and (e) H-Ni@Y at the

R-space; and WT EXAFS spectra of (f) Ni foil, (g) NiO, and (h) H-Ni@Y.

The nature and concentration of acidic sites may significantly influence the catalytic
performance in ethylene dimerization. Moderate-strength Brensted acid sites in zeolites
typically favor selective linear product formation, such as 1-butene, while stronger
Brensted sites may induce undesired cracking or isomerization side reactions due to their
higher reactivity.”® The combination of NH; temperature-programmed desorption
(NHs-TPD, Figure 3a and 3b; Figure S9-S10; Table S4) and pyridine-adsorbed infrared
spectroscopy (Py-IR, Figure 3¢ and 3d, Figure S11-S16) provides comprehensive

characterization of zeolite acidity. NH3-TPD offers reliable insights into both the
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concentration and strength distribution of acid sites. Following ion exchange withdNHi@Awscoso7ss
solution, the acid strength of H-Ni@Y notably increased. The desorption peaks ~440 K,
~550 K, ~720 K and ~950 K were attributed to weak acid sites, medium acid sites and
strong acid sites, respectively.?” It was demonstrated that acid strength enhancement
positively correlated with ethylene dimerization activity.® 3! The higher NH3 desorption
amount observed for H-Ni@Y compared to Na-Ni@Y (Figure 3a and Table S4) indicated
additional acidic sites introduced via NHsAc ion exchange and subsequent calcination.
H-Ni@Y exhibited the highest total acid content among all samples (Table S4), with its
medium and strong acid levels also surpassing those of other catalysts. Comparison
between H-Ni@Y and pristine H-Y confirms that Ni2+ incorporation introduces additional
Lewis acid sites (Figure S10). These Ni-derived Lewis sites may participate in hydrogen
transfer, complementing the Brensted acid sites. However, control experiments clearly
indicate that Brensted acidity remains the dominant factor governing hydrogen-transfer

steps (Figure S44).
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Figure 3. Acidity characterization. (a) NH3-TPD profiles of Na-Ni@Y and H-Ni@Y; (b) The
distribution of acidity in the Na-Ni@Y and H-Ni@Y; The Py-IR spectra of (¢) Na-Ni@Y and (d)

H-Ni@Y.

2.2 Ethylene Selective Dimerization to 1-Butene over H-Ni@Y

The catalytic performance of H-Ni@Y and various control -catalysts was
systematically evaluated in a continuous-flow fixed-bed reactor. Reaction parameters,
including ethylene pressure, gas hourly space velocity (GHSV), NH4OAc solution
concentration, and ammonium salt selection were carefully optimized, as detailed in
Figures S17-S22. Comparative ethylene dimerization experiments using Na-Ni@Y
(Figure 4a) and H-Ni@Y (Figure 4b) catalysts were performed under optimized reaction
conditions within the temperature range of 298 to 393 K. Notably, the H-Ni@Y catalyst
exhibited superior catalytic activity, achieving remarkable selectivity towards 1-butene
(83.6%) along with an exceptionally high turnover frequency (TOF) of 4.28x10° h'! at 333

K, significantly outperforming the Na-Ni@Y catalyst. Post-reaction characterizations
10
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employing X-ray diffraction (XRD, Figure S23), scanning electron microscopy 1(SEMszscoso7ss
Figure S24), BET surface area measurements (Figures S25-S26, Table S2),
thermogravimetric differential scanning calorimetry (TG-DSC, Figure S27), and X-ray
photoelectron spectroscopy (XPS, Figure S28) consistently confirmed the robust structural
stability and the preservation of the coordination environment of Ni within the zeolite
matrix. The acidity of used H-Ni@Y declined significantly as shown in Py-IR (Figure S29)
and NH3-TPD (Figure S30 and Table S4). The apparent decrease in acidity is fully
reversible and arises primarily from the coverage of acid sites by carbonaceous species
formed during reaction. After calcination in air, the coke is completely removed, restoring
both catalytic performance (Figure S31) and acidity (Figure S30, Table S4). This
demonstrates that the acidity loss is due to reversible site blocking rather than framework
degradation. As shown in Figure S32, the H-Ni@Y catalyst experienced a gradual
deactivation over 180 min on stream due to coke deposition. Crucially, the activity was
fully recovered after a simple calcination step, demonstrating excellent regenerability. A
benchmark comparison with reported heterogeneous catalysts (Figure S33, Table S6)
confirms that H-Ni@Y excels in activity and 1-butene selectivity, while its stability is

comparable but not superior. Furthermore, characterization of the regenerated catalyst

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(XRD, TEM) confirmed no changes in the zeolite topology or Ni dispersion, underscoring

its robust structural integrity (Figure S34 and Figure S35).

Open Access Article. Published on 14 October 2025. Downloaded on 10/16/2025 6:35:15 AM.

Various zeolite samples incorporating different transition metals (H-M@Y, where M =

(cc)

Co, Ni, Cu, Zn) were examined for ethylene dimerization in the absence of cocatalysts
(Figures S36-S38). Among these, the H-Ni@Y catalyst distinctly stood out, underscoring
nickel as the crucial active metal center necessary for efficient ethylene dimerization.
Comparative experiments involving modified commercial Y zeolites (Figure 4c¢ and
Figures S39-S45) revealed negligible catalytic activity from purely acidic sites (H-Y),
emphasizing the indispensable role of nickel active sites in driving the catalytic reaction.
Ni-Y containing ion exchanged Ni species still exhibited limited performance, highlighting
the importance of the specific coordination environment of Ni and acidity. Moreover,

Ni-containing zeolites with varied acidity, such as H-Ni-Y and Ni-H-Y obtained by the
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traditional ion-exchange method, exhibited suboptimal catalytic activities andiolowesscoso7ss
selectivity toward 1-butene, correlating well with results from Py-IR spectroscopy and
NH;-TPD analyses as previously mentioned. Further comparative assessments indicated
that the H-Ni@Y catalyst outperformed previously reported benchmark Ni-Mg-Y catalysts
in terms of activity,!® as illustrated in Figure 4d and Table S5. This enhanced performance
is primarily attributed to the significantly improved Brensted acidity of the H-Ni@Y
catalyst. Consequently, the H-Ni@Y catalyst not only achieved outstanding ethylene
dimerization activity and exceptional selectivity toward 1-butene without the need for
additional cocatalysts, but also demonstrated substantial promise for developing innovative

industrial catalytic processes.
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Figure 4. Catalytic performance in ethylene dimerization. Ethylene dimerization performance over
(a) Na-Ni@Y, (b) H-Ni@Y and (c¢) Ni-containing control samples. Reaction condition: 0.1 g catalyst,
3.0 MPa pure C>Hs, GHSV = 18000 h''. (d) Literature survey of Ni-containing zeolite catalysts for

ethylene dimerization in terms of 1-butene selectivity and ethylene dimerization rates.
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2.3 Mechanistic Investigation of Ethylene Dimerization DOI: 10.1039/D5SC05078B

To elucidate the changes in the coordination environment of active nickel sites in the
H-Ni@Y catalyst during ethylene dimerization, detailed X-ray absorption spectroscopy
(XAS) analyses were performed (Figure Sa and Figure S46). The coordination number of
nickel for the first coordination shell (Ni-O/C) notably increased from 3.8 to 4.2 upon
exposure to ethylene (Table S3), indicating the gradual coordination of ethylene molecules
to unsaturated nickel sites.

To further investigate the formation and evolution of surface species during ethylene
dimerization, temperature-dependent in situ Fourier transform infrared spectroscopy (FTIR)
was utilized. Analysis of H-Ni@Y exposed to ethylene (Figure Sb) revealed distinct
characteristic stretching bands appearing around 2877 cm’!, assigned to the C-H stretching
vibrations in -CHz groups of Ni-alkyl intermediates, and at approximately 2862 cm,

attributed to chemisorbed butene species.” 2% 32

These bands emerged at temperatures as
low as 298 K, signifying rapid ethylene adsorption followed by efficient dimerization.
Their intensities progressively increased with elevated temperature, reaching a maximum

at 393 K, closely mirroring trends observed in the catalytic activity measurements (Figure

4b). The rapid appearance and pronounced intensity of these spectral features directly

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

correlate with the outstanding catalytic performance of H-Ni@Y. The deformation

vibration of ethylene molecules chemically adsorbed to Ni species can be found at 1612

Open Access Article. Published on 14 October 2025. Downloaded on 10/16/2025 6:35:15 AM.

cm! and 1340 cm™! belong to C=C stretching and C-H stretching adsorbed to the transition

(cc)

metal center, respectively, 3

confirming ethylene adsorption onto Ni active sites within
H-Ni@Y (Figure 5b). However, the infrared band (vc=0=1710 ¢cm™) of the hydroxyl group
chemically adsorbed by ethylene molecules has not been found. Simultaneously,
characteristic hydroxyl stretching vibrations were clearly detected, including bridging
hydroxyl groups (Si-O(H)-Al) at 3603 ¢cm™,*> 3¢ isolated silanol (Si-OH) groups at 3732
cm,>7 and bridging hydroxyl groups within FAU zeolite supercages at 3653 cm!. These
observations explicitly demonstrate the participation of the Bronsted acid sites during the

reaction. Additionally, weaker overlapping bands at 3706, 3690, and 3642 c¢cm™ were
attributed to AI-OH,*® Ni-OH,!? and additional Si-O(H)-Al functionalities®®, respectively.
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In stark contrast, Na-Ni@Y exhibited barely detectable absorption peaks aroundi2875%scoso78s

and 2860 cm!, even at elevated temperatures (393 K), consistent with its substantially
inferior catalytic performance (Figure S47). Similar underperformance was observed for
the H-Ni-Y catalyst (Figure S48). Furthermore, temperature-programmed surface reaction
(TPSR) experiments (CoHs-TPSR, Figure S49) provided direct evidence of
ethylene-to-butene conversion, strongly aligning with the in situ FTIR results. Isotope
labeling experiments using deuterated ethylene (C2Ds-TPSR, Figure S50) further revealed
the formation of Cs4DxHsx butene isotopologues, conclusively demonstrating the
involvement of zeolite framework hydrogen species in ethylene dimerization and

subsequent H-D exchange processes.
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Figure 5. Catalytic and reaction mechanism. (a) Changes of EXAFS when H-Ni@Y was exposed to
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K, 313 K, 333 K, 333 K, 353 K, 373 K, 393 K; (¢) The time-dependent in situ FTIR of H-Ni@Y
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30 min, 40 min; (d) Pulse-response experiments of feeding D> pulses to H-Ni@Y and Na-Ni@Y at 333

K; (e) Free energy profiles of ethylene dimerization to butene over Na-Ni@Y and H-Ni@Y; (f)

Schematic illustration of the reaction mechanism of H-Ni@Y catalyst in ethylene dimerization,

proposed as Cossee-Arlman pathway.
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Time-dependent in situ FTIR analysis of H-Ni@Y exposure to CoHy at 333 K (Figure
S51) was used to investigate the reaction rate. Firstly, the peaks attributed to Ni-alkyl motif
(C-H stretching bands of CH> at 2875 ¢cm™!) and chemisorbed butene (C-H stretching bands
of CHs at 2860 cm™) gradually emerged,** and the signal intensity increased over time.
Subsequently, the infrared signal of hydroxyl group and gas phase (C:Hs and CsHs)
infrared signal emerged, and their trend were consistent with the C-H stretching infrared
signal as described above. These results underscored the superior catalytic performance of
H-Ni@Y compared to Na-Ni@Y (Figure S52). Moreover, the time-dependent in situ FTIR
of H-Ni@Y exposure to C2D4 at 333 K (Figure 5¢) was further investigated. The adsorbed
CoD4 at ~2200 cm™ and CDs (vep = 2071 ecm™!, vew/ven =~ 1.38) were appeared;*! 42
meanwhile, the hydroxy group (OD) of zeolite acid sites at 2688 and 2596 cm™ (vo.u/vo-n
~ 1.39) were observed® only on H-Ni@Y catalyst rather than Na-Ni@Y (Figure S53).
That is, the abundant acidic sites in the H-Ni@Y catalyst promote the occurrence of
ethylene dimerization by participating in the hydrogen transfer process. H-D exchange
(Figure 5d) and in situ FTIR results (Figure 5) confirm that Brensted sites are crucial for
hydrogen transfer. To evaluate their role in desorption, 1-butene-TPD experiments were
conducted on H-Ni@Y and Na-Ni@Y (Figure S54). Both showed nearly identical
desorption profiles, indicating that product desorption is primarily governed by Ni sites.
Hence, Bronsted sites chiefly facilitate hydrogen transfer rather than product release.
According to the density functional theory (DFT) calculations (Figure 5e), the Bronsted
acid site adjacent to the Ni-containing six-membered ring facilitated the formation of the
Ni-buteryl species by immobilizing and activating ethylene at a much lower energy (73.5
kJ/mol) than that required for Na-Ni@Y (131.4 kJ/mol). These results confirmed that
Brensted acidic sites within the H-Ni@Y zeolite framework substantially promote proton
transfer events, thereby significantly enhancing butene formation during ethylene
dimerization.

Based on experimental evidence and DFT results, we proposed the following

sequence: (i) Coordinatively unsaturated Ni sites primarily adsorb and activate ethylene
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molecules. (ii) The formation of the key C.Hs* intermediate requires synergyoNiiGHessC050788
activate two ethylene molecules, while adjacent Brensted acid sites facilitate C-C bond
coupling via proton transfer. (iii) The final steps (hydrogen transfer and B-H elimination to
yield 1-butene) are predominantly promoted by Brensted acid sites. Thereby the reaction
mechanism for ethylene dimerization over H-Ni@Y was proposed as Figure 5f. In situ
generated Ni-alkyl species represent the intrinsic active sites, with ethylene dimerization
proceeding via the Cossee-Arlman pathway, facilitated by dynamic proton transfers. The
zeolite framework and the precise positioning of Ni and acidic sites synergistically
promote hydrogen transfer, enhancing catalytic performance in a manner analogous to
cocatalysts in homogeneous systems. Consequently, the uniquely optimized structural and
acidic configuration of H-Ni@Y constitutes an exceptionally effective catalyst platform for

the selective ethylene dimerization to 1-butene.

3. Conclusions
In this study, a ligand-protected hydrothermal synthesis combined with NH4" ion
exchange was developed to produce H-Ni@Y zeolite with well-defined, coordinatively

unsaturated Ni species and abundant Brensted acid sites. The H-Ni@Y catalyst exhibited

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

exceptional performance for ethylene dimerization, delivering high rates of 1-butene

formation and remarkable selectivity in the absence of any additives. Comprehensive

Open Access Article. Published on 14 October 2025. Downloaded on 10/16/2025 6:35:15 AM.

spectroscopic characterizations and density functional theory (DFT) calculations identified

(cc)

the in situ formed Ni-alkyl species as the intrinsic active sites, with ethylene dimerization
proceeding via the Cossee-Arlman mechanism, facilitated by proton transfer processes.
The findings presented here significantly advance the understanding of zeolite-catalyzed
ethylene dimerization, highlighting the potential of Ni-confined zeolites as highly effective

catalysts for this important industrial reaction.
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