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Bis(N-Heterocyclic Carbene)s Incorporating Silicon in the Ligand 
Backbone
Braulio M. Puerta Lombardi,†a Katia A. McCallum,†a Alexander Harrison,a Devon S. Louwe,a Jayar 
Espejo,a Karima Bouzidi,a Roland Roesler*a 

A straightforward, modular, and high yielding synthetic protocol for accessing bis(N-heterocyclic)carbenes incorporating 
alkyl and aryl N-substituents with varied steric profiles, as well as flexible dimethylsilane and dimethylsiloxane linkers is 
presented. This provides a more direct entry to both new and reported chelating bis(carbene) ligands. The incorporation of 
dimethylsilicon fragments rather than linear alkyl chains in the linker is expected to enhance the chelating properties of the 
ligand by means of the Thorpe-Ingold effect.

Introduction
The first bis(N-heterocyclic) carbene, bis(NHC), was reported 
only five years after Arduengo’s seminal communication of the 
first stable N-heterocyclic carbene, NHC, in 1991.1 Since then, 
bidentate bis(NHC)s have established themselves as 
exceptional ancillary ligands in homogeneous catalysis and 
small molecule activation, acting as excellent σ-donors and 
moderate π-acceptors with easily tunable steric profiles. Their 
transition metal complexes have been employed in a variety of 
applications,2,3,4 including cross coupling reactions, methane 
oxidation,5 hydrogenation6 and transfer hydrogenation, water 
oxidation,7 photocatalysis, assembly of supramolecular 
architectures,8,9 deoxygenative arylation,10 and others.11 
Amongst the ample palette of known bis(NHC) ligands, an 
overwhelming majority are tethered by linear alkyl chains 
ranging between one to four carbons long. Chelation (A) is 
typically enforced by rigid, strictly cis-binding methylene-
bridged bis(NHC)s (Chart 1), whereas ligands incorporating 
longer linkers frequently coordinate in a ditopic fashion, 
yielding bimetallic complexes (B). Equilibria between chelating 
and bridging structures have been observed,12 and this issue is 
compounded by the potential formation of open-chain, 
bridging, double-bridging, and oligomeric species, which in turn 
can make product purification and isolation difficult. Several 
bis(NHC)s incorporating long alkyl chains (n > 4, Chart 1) have 
also been reported, and they usually formed bridging bimetallic 
complexes of type B.2,3 NHCs connected by long alkyl chains 

have been incorporated into macrocyclic ligand systems.13 
However, exceedingly few examples of chelating bis(NHC)s 
incorporating alkyl linkers longer than four atoms are 
known,12,14 and they always incorporate N- alkyl substituents, 
or “wingtips”. The presence of donor atoms such as nitrogen,15 
oxygen,16 or heavier chalcogens17 in the linker appears to 
promote chelation, even if these atoms are not directly involved 
in bonding to the metal. 
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Chart 1. Binding modes of bidentate NHCs.

Notwithstanding the widespread use and proven applicability as 
ancillary ligands in catalysis of monodentate, N-aryl-substituted 
NHCs incorporating mesityl (IMes and SIMes) and 2,6-
diisopropylphenyl (IPr and SIPr) substituents, the number of 
chelating, N-aryl-substituted bis(NHC)s featuring longer alkyl 
linkers remains small.3 Only a handful of such complexes A with 
n >1 have been crystallographically characterized, including: n = 
2, 3, and 4, R = Mes and Dipp, MLn = Re(CO)3Br and 
Re(CO)3(MeCN)+;18 n = 2 and 3, R = Ph and Mes, MLn = 
Rh(cod)+;19 n = 2, 3, and 4, R = Mes, MLn = Ni(CO3);20 n = 2, R = 
Mes, MLn = FeBr2;21 n = 2, R = 2,6-Me2C6H3 and 4-(EtOOC)C6H4, 
MLn = PdBr2;22 n = 2, R = Mes and 2,4-Me2C6H3, MLn = PdBr2;23 n 
= 2, R = 1,2-cyclohexylene, MLn = PdCl2.24

a.Department of Chemistry, University of Calgary, 2500 University Drive NW, 
Calgary, Alberta T2N 1N4, Canada.

† These authors have contributed equally to this work. 
Electronic Supplementary Information (ESI) available: Experimental details for the 
synthesis of organosilanes and N-substituted imidazole reagents, as well as NMR 
spectra for all compounds and crystallographic details for 2b, 2e and 2i (CCDC 
deposition numbers 2279641-2279643). See DOI: 10.1039/x0xx00000x. 
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A logical yet underexplored avenue to enhance the chelating 
ability vs. ditopic coordination of bis(NHC)s involves the 
incorporation of substituted (branched) alkyl linkers. Known as 
the Thorpe-Ingold effect or gem-dimethyl effect, it was 
originally coined in 1915 to rationalize the increased rates of 
intramolecular cyclization reactions in response to increased 
steric hindrance.25 Shaw extrapolated the concept to 
metallacycles by developing chelate complexes of diphosphine 
ligands with ten-carbon-long linkers.26 The large steric 
requirements of the phosphine fragments resulted in hindered 
intramolecular conformational changes, and thus a negligible 
entropy loss upon metalation.
Several studies have heuristically simplified the coordination 
behavior of bidentate bis(NHC) ligands (chelation vs. bridging) 
in square-planar late-transition-metal to two factors: steric bulk 
of the imidazolyl R-groups, and length of the linker.2 Shorter 
linkers coerce the imidazolyl R groups to lie in the NHC-M-NHC 
plane, while longer, more flexible linkers cause the imidazolyl R 
groups to bend out of metal plane to alleviate strain. With other 
words, chelation is favored by small R groups and long linkers, 
or large R groups and short linkers.27 We recently synthesized 
ligand variants that defy the above postulates to stabilize 
electron-rich, chelate complexes of nickel featuring unusual 
reactivity.28 By exploiting the Thorpe-Ingold effect using 
branched organosilyl backbone linkers, chelation was enforced 
with ligands incorporating large R groups (2,6-diisopropylphenyl 
or Dipp) and long linkers consisting of 3- or 5-atom chains. 
Although the ligands were accessible in few synthetic steps, the 
reactions have often been plagued by low yields and long 
reaction times.
We present herein a straightforward synthetic protocol for the 
generation of bis(imidazolium) salts linked by organosilyl 
groups. These main-group fragments allow for expedient 
assembly of bis-imidazolium salts with sterically bulky linkers via 
nucleophilic substitution. Subsequent deprotonation generates 
the carbene ligands, which are stable and can be handled at 
room-temperature under anhydrous, anaerobic conditions.

Results and discussion
The traditional method for generating multitopic imidazolium 
salts involves the reaction of an N-substituted imidazole with an 
appropriate alkyl halide in a standard nucleophilic substitution. 
Capitalizing on this methodology, a wide array of N-aryl 
bis(imidazolium) salts incorporating linear alkyl linkers between 
two and ten-carbons long were synthesized under solvent-free 
conditions.29 Unfortunately, this methodology cannot be used 
to incorporate substituted alkane linkers: Steric hindrance 
inhibits the backside attack of incoming nucleophiles on the 
electrophilic halomethyl-carbon.30 Organosilane analogues will, 
however, undergo nucleophilic substitution at a carbon alpha to 
the silicon31,32 and thus, this appeared as a suitable synthetic 
strategy for the generation of bis(NHC) ligands incorporating 
substituted linkers. The isostructural relationship between 
silicon and carbon allows for the replacement of carbon with 
silicon for synthetic convenience at the expense of some 
thermodynamic stability. An ancillary bis(N-

methylbenzimidazole) ligand featuring a (-CH2)2SiMe2 linker, 
which proved effective in the nickel-catalyzed Kumada 
Coupling, is the only bis(NHC) ligand incorporating silicon in the 
linker reported to date.32 In addition, an NHC-Si-NHC pincer 
ligand was template-built in the coordination sphere of cobalt,33 
and bis(methylimidazolium) diiodides incorporating 
dimethylsiloxane-containing linkers have been reported.34
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Scheme 1. Synthesis of bis(imidazolium) diiodides 2a-i and the corresponding free 
bis(NHC)s 3b-i

In a typical procedure, the organosilyl diiodide and an excess of 
N-Dipp imidazole were combined in a closed flask with magnetic 
stirring. Heating the mixtures up to the melting point of the 
imidazole for one hour saw the formation of a precipitate, with 
complete solidification of the reaction mixtures upon cooling 
back to room temperature. Compounds 2d and 2h were 
obtained in high yields upon washing the solids and drying in 
vacuo (Scheme 1). On the other hand, reactions involving liquid 
alkylimidazoles (R = Me, iPr, tBu) required lower reaction 
temperatures (ca. 80-100°C for 1-2 hours, see Experimental 
Section). Dissolution of the product mixtures in 
dichloromethane or acetonitrile and addition of an anti-solvent 
(hexanes, diethyl ether, or ethyl acetate) caused re-
precipitation of the products, which were isolated by vacuum 
filtration as air-stable, off-white solids. Compound purity was 
confirmed by satisfactory elemental analysis, and molecular 
connectivity confirmed by 1H and 13C one-dimensional NMR 
techniques, as well as two-dimensional Heteronuclear Single 
Quantum Coherence (HSQC) and Heteronuclear Multiple-Bond 
Correlation (HMBC) pulse sequences. In all cases, a diagnostic, 
strongly-deshielded signal was observed between 9-10 ppm in 
the 1H spectra, attributed to the imidazolium C2 proton. N-
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methylene protons on the linker were identified as singlets 
around 3-4 ppm, and diagnostic dimethylsilyl protons were 
located in the shielded, 0-1 ppm spectral range.
With the exception of 2a, the imidazolium salts could be 
deprotonated with potassium hexamethyldisilazide in either 
anhydrous benzene or tetrahydrofuran under an argon 
atmosphere at room temperature (Scheme 1). The mixtures 
were stirred for ca. three hours and subsequently filtered to 
remove insoluble byproducts. Solvent removal in vacuo yielded 
the free carbenes as off-white solids or brown oils, depending 
on substituent R: 3d and 3h were solids, as previously 
described,28 while 3b, 3c, 3f, 3g, and 3i were oils and thus were 
stored in their crude form. 1H NMR showed the disappearance 
of the strongly deshielded signal at 9-10 ppm and all other 
resonances were located at their expected chemical shifts. 
Similarly, 13C signals attributed to the carbene carbons were 
observed around 212-216 ppm. Under an inert atmosphere, the 
free carbenes could be stored for at least three months at -35 
°C and could be handled at room temperature in solution and 
the solid state. Attempts to isolate free carbene 3a were not 
successful. 

Conclusions
We report a high-yielding synthetic protocol with general 
applicability for the expedient generation of bis(imidazolium) 
salts linked by organosilyl groups. Furthermore, we outline 
deprotonation procedures for the synthesis of the 
corresponding free bis(carbene) ligands, which can be handled 
at room-temperature under anhydrous and air-free conditions. 
This straightforward protocol allows for the systematic 
assembly of bidentate carbene ligands incorporating long, 
branched organosilane linkers, as well as alkyl and aryl N-
substituents with varied steric profile. According to the Thorpe-
Ingold effect, the steric bulk of the backbone improves the 
chelating ability of these ligands, as confirmed by our previous 
studies.28 Besides providing a more facile access to ligands we 
previously reported, this work also introduces new derivatives 
with smaller steric profiles, with potential use in catalytic 
applications.

Experimental
General considerations 

Imidazolium salts 2a-i were synthesized in air using 
commercially supplied solvents (Millipore-Sigma, Fischer 
Scientific) that were used as received. Free ligands 3b-i were 
generated with careful exclusion of air and moisture in an argon 
atmosphere, using a double-manifold vacuum line and an 
MBRAUN glovebox operating with argon (Air Liquide, 99.999% 
purity). Solvents were dried over 4 Å molecular sieves or 
sodium/benzophenone and degassed prior to use. All NMR 
spectra were acquired on Bruker Avance and Avance III 400 
MHz spectrometers at 298K. 1H and 13C NMR chemical shifts 
were referenced to residual solvent peaks and naturally 
abundant 13C resonances for all deuterated solvents: δ CH2Cl2-

d1 (5.32 ppm, 1H) and CH2Cl2-d2 (54.00 ppm, 13C); THF-d7 (3.58 
ppm, 1H) and THF-d8 (67.57 ppm, 13C); toluene-d7 (2.09 ppm, 1H) 
and toluene-d8 (20.4 ppm, 13C). All 13C spectra were broad-band 
proton-decoupled. 
X-ray crystallographic data were collected on a Bruker SMART 
APEX II CCD diffractometer using suitable single crystals coated 
in Paratone 8277 oil (Exxon) and mounted on glass-fiber loops. 
Measurements were processed with the Apex III software suite. 
Structures were solved using the SHELXT35 structure solution 
program with intrinsic phasing and refined using the SHELXL36 
refinement package with least squares minimization, all under 
the Olex2 platform.37 Full crystallographic details can be found 
in each independently uploaded crystallographic information 
file (cif).
Elemental analyses were obtained on a Perkin-Elmer Model 
2400 Series II analyzer. The Table of Contents graphic was 
generated with the aid of ChatGPT 4.0.38 
Synthetic methods

General synthesis of bis(imidazolium) salts, 2. In a 20 mL 
scintillation vial, bis(iodomethyl)dimethylsilane or 
bis(iodomethyl)-1,1,3,3-tetramethyldisiloxane was combined 
neat with a 50% excess of N-substituted imidazole. The vial was 
closed and the mixture was heated for 1-2 hours. Upon cooling, 
ca. 5 mL of DCM or acetonitrile was added to dissolve the solid, 
and the product was reprecipitated upon addition of ca. 40 mL 
of an anti-solvent (hexanes, diethyl ether, or ethyl acetate). The 
resulting salts were isolated via vacuum filtration as white 
solids.
Synthesis of 2a. N-methylimidazole (2.00 g, 24.4 mmol) and 
bis(iodomethyl)dimethylsilane (2.77 g, 8.16 mmol) were heated 
neat to 100 °C for two hours. Upon cooling, 5 mL of acetonitrile 
was added to dissolve the solid, and the product was 
reprecipitated upon addition of ca. 40 mL of ethyl acetate. After 
thorough sonication, 2a was isolated via vacuum filtration as a 
white solid (4.06 g, 8.04 mmol, 99 %). Spectral data matched 
literature.32 Anal. for C12H22N4I2Si (%): Calcd. C 28.58; H 4.40; N 
11.11. Found C 28.42; H 4.73; N 11.18.
Synthesis of 2b. N-iso-propylimidazole (1.00 g, 9.08 mmol) and 
bis(iodomethyl)dimethylsilane (1.03 g, 3.03 mmol) were heated 
neat to 100 °C for two hours. Upon cooling, ca. 5 mL of DCM 
was added to dissolve the solid, and the product was 
reprecipitated upon addition of ca. 40 mL of diethyl ether. 2b 
was isolated via vacuum filtration as a white solid (1.574 g, 2.81 
mmol, 93 %). 1H NMR (400 MHz, CD3CN) δ 9.29 (s, 1H, N2CH), 
7.54 (s, 1H, ImH), 7.53 (s, 1H, ImH), 4.68 (hept, J = 6.7 Hz, 1H, 
CH(CH3)2), 4.26 (s, 2H, CH2), 1.54 (d, J = 8.0 Hz, 6H, CH(CH3)2), 
0.26 (s, 3H, Si(CH3)2). 13C{1H} NMR (101 MHz, CD3CN) δ 135.13 
(s, N2C), 124.28 (s, C2N2C), 121.51 (s, C2N2C), 53.99 (s, CH(CH3)2), 
39.52 (s, CH2), 22.95 (s, CH(CH3)2), -5.15 (s, Si(CH3)2). 29Si{1H} 
(119 MHz, CD3CN) δ 3.62. Anal. for C16H30N4I2Si (%): Calcd. C 
34.30; H 5.40; N 10.00. Found C 34.21; H 5.58; N 9.97.
Synthesis of 2c. N-tert-butylimidazole (1.00 g, 8.05 mmol) and 
bis(iodomethyl)dimethylsilane (0.913 g, 2.69 mmol) were 
heated neat to 100 °C for two hours. Upon cooling, ca. 5 mL of 
DCM was added to dissolve the solid, and the product was 
reprecipitated upon addition of ca. 40 mL of ethyl acetate. 2c 
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was isolated via vacuum filtration as a white solid (1.52 g, 2.58 
mmol, 96 %). 1H NMR (400 MHz, DMSO-d6) δ 9.25 (s, 1H, N2CH), 
8.05 (s, 1H, ImH), 7.76 (s, 1H, ImH), 4.11 (s, 2H, CH2), 1.60 (s, 9H, 
C(CH3)3), 0.14 (s, 3H, Si(CH3)2). 13C{1H} NMR (101 MHz, DMSO-
d6) δ 133.88 (s, N2C), 123.27 (s, C2N2C), 120.51 (s, C2N2C), 59.52 
(s, C(CH3)3), 38.27 (s, CH2), 29.04 (s, C(CH3)3), -5.83 (s, Si(CH3)2). 
29Si{1H} (79 MHz, DMSO-d6) δ 3.31. Anal. for C18H34N4I2Si (%): 
Calcd. C 36.74; H 5.82; N 9.52. Found C 36.58; H 5.95; N 9.57.
Synthesis of 2d. N-(2,6-diisopropylphenyl)imidazole (3.17 g, 
13.9 mmol) and bis(iodomethyl)dimethylsilane (1.45 g, 4.25 
mmol) were heated neat to 130 °C for one hour. Upon cooling, 
ca. 5 mL of DCM was then added to dissolve the solid, and the 
product was reprecipitated upon addition of ca. 40 mL of diethyl 
ether. 2d was isolated via vacuum filtration as a white solid 
(3.30 g, 4.14 mmol, 98%). Spectral data matched literature.28b

Synthesis of 2e. N-cyclohexylimidazole (1.55 g, 10.3 mmol) and 
bis(iodomethyl)dimethylsilane (1.14 g, 3.35 mmol) were heated 
neat to 100 °C for two hours. Upon cooling, ca. 5 mL of 
acetonitrile was added to dissolve the solid, and the product 
was reprecipitated upon addition of ca. 40 mL of ethyl acetate. 
After thorough sonication, 2e was isolated via vacuum filtration 
as a white solid (1.936 g, 3.02 mmol, 90 %). 1H NMR (400 MHz, 
CDCl3) δ 9.82 (s, 1H, N2CH), 7.81 (s, 1H, ImH), 7.48 (s, 1H, ImH), 
4.55 (s, 2H, CH2), 4.39-4.31 (m, 1H, Cy-CH), 2.18 (m, 2JHH=12.3 
Hz, 2H, Cy-CH2), 1.83 (m, 2JHH=13.8 Hz, 2H, Cy-CH2), 1.74-1.63 
(m, 3H, Cy-CH2), 1.45-1.34 (m, 2H, Cy-CH2), 1.27-1.16 (m, 1H, Cy-
CH2), 0.34 (s, 3H, Si(CH3)2). 13C{1H} NMR (101 MHz, CDCl3) δ 
134.0 (s, N2C), 123.7 (s, C2N2C), 120.6 (s, C2N2C), 59.9 (s, Cy-CH), 
39.1 (s, CH2), 33.4 (s, Cy-CH2), 24.8 (s, Cy-CH2), 24.4 (s, Cy-CH2), 
-4.51 (s, Si(CH3)2). 29Si{1H} (79 MHz, CDCl3) δ 3.00. Anal. for 
C22H38N4I2Si (%): Calcd. C 41.26; H 5.98; N 8.75. Found C 41.16; 
H 6.15; N 8.75.
Synthesis of 2f. N-iso-propylimidazole (1.01 g, 9.17 mmol) and 
1,3-bis(iodomethyl)-1,1,3,3-tetramethyldisiloxane (1.26 g, 3.04 
mmol) were heated neat to 100 °C for two hours. Upon cooling, 
ca. 5 mL of DCM was added to dissolve the solid, and the 
product was reprecipitated upon addition of ca. 40 mL of diethyl 
ether. 2f was isolated via vacuum filtration as a yellow solid 
(1.60 g, 2.52 mmol, 82.9 %). 1H NMR (600 MHz, DMSO-d6) δ 9.22 
(s, 1H, N2CH), 7.96 (s, 1H, ImH), 7.66 (s, 1H, ImH), 4.70 (hept, J = 
6.6 Hz, 1H, CH(CH3)2), 3.94 (s, 2H, CH2), 1.47 (d, J = 8.0 Hz, 6H, 
CH(CH3)2), 0.14 (s, 6H, Si(CH3)2). 13C{1H} NMR (151 MHz, DMSO-
d6) δ 133.99 (s, N2C), 123.31 (s, C2N2C), 120.65 (s, C2N2C), 52.13 
(s, CH(CH3)2), 41.01 (s, CH2), 22.44 (s, CH(CH3)2), -1.12 (s, 
Si(CH3)2). 29Si{1H} (79 MHz, DMSO-d6) δ 5.64. Anal. for 
C18H36N4I2Si2O (%): Calcd. C 34.07; H 5.72; N 8.83. Found C 
33.74; H 5.88; N 8.71.
Synthesis of 2g. N-tert-butylimidazole (1.00 g, 8.05 mmol) and 
1,3-bis-(iodomethyl)-1,1,3,3-tetramethyldisiloxane (1.11 g, 2.68 
mmol) were heated to 100 °C for two hours. Upon cooling, ca. 
5 mL of DCM was then added to dissolve the solid, and the 
product was reprecipitated upon addition of ca. 40 mL of ethyl 
acetate. 2g was isolated via vacuum filtration as a white solid 
(1.64 g, 2.48 mmol, 92.4 %). 1H NMR (400 MHz, CDCl3) δ 10.12 
(s, 1H, N2CH), 7.71 (s, 1H, ImH), 7.60 (s, 1H, ImH), 4.33 (s, 2H, 
CH2), 1.69 (s, 9H, C(CH3)3), 0.23 (s, 6H, Si(CH3)2). 13C{1H} NMR 
(101 MHz, CDCl3) δ 134.40 (s, N2C), 123.86 (s, C2N2C), 119.91 (s, 

C2N2C), 60.56 (s, C(CH3)3), 41.92 (s, CH2), 30.46 (s, C(CH3)3), -0.30 
(s, Si(CH3)2). 29Si{1H} (79 MHz, CDCl3) δ 5.76. Anal. for 
C20H40N4I2Si2O (%): Calcd. C 36.26; H 6.09; N 8.46. Found C 
36.25; H 6.29; N 8.45.
Synthesis of 2h. N-(2,6-diisopropylphenyl)imidazole (1.00 g, 
4.38 mmol) and 1,3-bis-(iodomethyl)-1,1,3,3-
tetramethyldisiloxane (0.609 g, 1.47 mmol) were heated to 130 
°C for one hour. Upon cooling, ca. 5 mL of DCM was then added 
to dissolve the solid, and the product was reprecipitated upon 
addition of ca. 40 mL of diethyl ether. 2h was isolated via 
vacuum filtration as an off-white solid (1.191 g, 1.37 mmol, 93.0 
%). Spectral data matched literature.28a

Synthesis of 2i. N-cyclohexylimidazole (1.58 g, 10.5 mmol) and 
1,3-bis-(iodomethyl)-1,1,3,3-tetramethyldisiloxane (1.46 g, 3.53 
mmol) were heated to 100 °C for two hours. Upon cooling, ca. 
5 mL of acetonitrile was then added to dissolve the solid, and 
the product was reprecipitated upon addition of ca. 40 mL of 
ethyl acetate. After thorough sonication, 2i was isolated via 
vacuum filtration as a white solid (2.423 g, 3.39 mmol, 96.2 %). 
1H NMR (400 MHz, CDCl3) δ 9.93 (s, 1H, N2CH), 7.64 (s, 1H, ImH), 
7.56 (s, 1H, ImH), 4.40-4.32 (m, 1H, Cy-CH), 4.23 (s, 2H, CH2), 
2.12 (d, 2JHH = 11.5 Hz, 2H, Cy-CH2), 1.82 (d, 2JHH = 13.8 Hz, 2H, 
Cy-CH2), 1.75-1.61 (m, 3H, Cy-CH2), 1.45-1.34 (m, 2H, Cy-CH2), 
1.27-1.14 (m, 1H, Cy-CH2), 0.17 (s, 3H, Si(CH3)2). 13C{1H} NMR 
(101 MHz, CDCl3) δ 134.1 (s, N2C), 123.5 (s, C2N2C), 120.6 (s, 
C2N2C), 59.8 (s, Cy-CH), 41.8 (s, CH2), 33.5 (s, Cy-CH2), 24.8 (s, Cy-
CH2), 24.4 (s, Cy-CH2), -0.50 (s, Si(CH3)2). 29Si{1H} (79 MHz, CDCl3) 
δ 5.80. Anal. for C24H44N4I2Si2O (%): Calcd. C 40.34; H 6.21; N 
7.84. Found C 40.41; H 6.40; N 7.85.
General synthesis of bis(carbene) ligands, 3. In a swivel frit, 
imidazolium salt, 2 was combined with KHMDS, and ca. 50 mL 
of benzene or THF were condensed via vacuum distillation. The 
apparatus was filled with argon and the mixture was stirred for 
3 hours at room temperature. The insoluble solids were 
removed by filtration and the filtrate was concentrated in 
vacuo. The solvent was removed in vacuo, and 3 was obtained 
as a brown oil or subsequently washed with pentane to furnish 
the products as off-white solids.
Synthesis of 3b. 2b (1.40 g, 2.50 mmol) and KHMDS (0.997 g, 
5.00 mmol) were stirred for three hours in benzene. Insoluble 
solids were filtered off and the filtrate was concentrated in 
vacuo to yield 3b as a brown oil. (0.534 g, 1.75 mmol, 70.2 % 
yield). 1H NMR (400 MHz, C6D6) δ 6.61 (s, 1H, ImH), 6.47 (s, 1H, 
ImH), 4.35 (hept, J = 6.7 Hz, 1H, CH(CH3)2), 3.73 (s, 2H, CH2), 1.24 
(d, J = 8.0 Hz, 6H, CH(CH3)2), 0.38 (s, 3H, Si(CH3)2). 13C{1H} NMR 
(101 MHz, C6D6) δ 212.4 (s, N2C), 120.40 (s, C2N2C), 115.11 (s, 
C2N2C), 51.65 (s, CH(CH3)2), 40.75 (s, CH2), 24.06 (s, CH(CH3)2), -
3.42 (s, Si(CH3)2).
Synthesis of 3c. 2c (1.20 g, 2.04 mmol) and KHMDS (0.814 g, 
4.08 mmol) were stirred for three hours in THF. Insoluble solids 
were filtered off and the filtrate was concentrated in vacuo to 
yield 3c as a brown oil. (0.502 g, 1.51 mmol, 74.0 % yield). 1H 
NMR (400 MHz, C6D6) δ 6.67 (s, 1H, ImH), 6.63 (s, 1H, ImH), 3.73 
(s, 2H, CH2), 1.46 (s, 9H, C(CH3)3), 0.37 (s, 3H, Si(CH3)2). 13C{1H} 
NMR (101 MHz, C6D6) δ 213.1 (s, N2C), 120.2 (s, C2N2C), 115.0 (s, 
C2N2C), 55.5 (s, C(CH3)3), 41.2 (s, CH2), 31.4 (s, C(CH3)3), -3.11 (s, 
Si(CH3)2).
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Synthesis of 3d. 2d (1.30 g, 1.64 mmol) and KHMDS (0.655 g, 
3.28 mmol) were stirred for three hours in benzene. Insoluble 
solids were filtered off and the filtrate was concentrated in 
vacuo. The residue was washed with pentane and dried under 
vacuum to yield 3d as an off-white solid. (0.402 g, 0.743 mmol, 
45.6 % yield). Spectral data matched literature.
Synthesis of 3e. 2e (1.00 g, 1.56 mmol) and KMHDS (0.623 g, 
3.12 mmol) were stirred for three hours in benzene. Insoluble 
solids were filtered off and the filtrate was concentrated in 
vacuo. The residue was subjected to six rounds of pentane 
addition, sonication, and solvent removal in vacuo to speed up 
the removal of all volatiles. The solid was subsequently washed 
with 10 mL of pentane and dried under vacuum to yield 3e as 
an off-white solid. (0.384 g, 0.998 mmol, 63.9 % yield). 1H NMR 
(600 MHz, C6D6) δ 6.63 (d, 3JHH = 1.5 Hz, 1H, ImH), 6.52 (d, 3JHH = 
1.5 Hz, 1H, ImH), 4.04 (m, 1H, Cy-CH), 3.75 (s, 2H, CH2), 2.07-
1.92 (m, 2H, Cy-CH2), 1.64-1.52 (m, 4H, Cy-CH2), 1.47-1.41 (m, 
1H, Cy-CH2), 1.21-1.08 (m, 2H, Cy-CH2), 1.02-0.95 (m, 1H, Cy-
CH2), 0.39 (s, 3H, Si(CH3)2). 13C{1H} NMR (151 MHz, C6D6) δ 212.1 
(s, N2C), 120.5 (s, C2N2C), 115.9 (s, C2N2C), 59.7 (s, Cy-CH), 40.9 
(s, CH2), 35.3 (s, Cy-CH2), 26.0 (s, Cy-CH2), 25.8 (s, Cy-CH2), -3.25 
(s, Si(CH3)2).
Synthesis of 3f. 2f (1.20 g, 1.89 mmol) and KHMDS (0.755 g, 3.78 
mmol) were stirred for three hours in benzene. Insoluble solids 
were filtered off and the filtrate was concentrated in vacuo to 
yield 3f as a brown oil. (0.457 g, 1.21 mmol, 63.8 % yield). 1H 
NMR (400 MHz, C6D6) δ 6.58 (s, 1H, ImH), 6.48 (s, 1H, ImH), 4.37 
(hept, J = 6.7 Hz, 2H, CH(CH3)2), 3.53 (s, 2H, CH2), 1.24 (d, J = 8.0 
Hz, 6H, CH(CH3)2), 0.37 (s, 6H, Si(CH3)2). 13C{1H} NMR (101 MHz, 
C6D6) δ 213.1 (s, N2C), 120.7 (s, C2N2C), 115.7 (s, C2N2C), 52.2 (s, 
CH2), 43.3 (s, CH(CH3)2), 24.5 (s, CH(CH3)2), 1.00 (s, Si(CH3)2).
Synthesis of 3g. 2g (1.70 g, 2.57 mmol) and KHMDS (1.03 g, 5.14 
mmol) were stirred for three hours in THF. Insoluble solids were 
filtered off and the filtrate was concentrated in vacuo to yield 
3g as a brown oil. (0.429 g, 1.06 mmol, 41.1 % yield). 1H NMR 
(400 MHz, C6D6) δ 6.72 (s, 1H, ImH), 6.60 (s, 1H, ImH), 3.52 (s, 
2H, CH2), 1.45 (s, 9H, C(CH3)3), 0.33 (s, 6H, Si(CH3)2). 13C{1H} NMR 
(101 MHz, C6D6) δ 213.3 (s, N2C), 120.0 (s, C2N2C), 115.2 (s, 
C2N2C), 55.5 (s, C(CH3)3), 43.2 (s, CH2), 31.5 (s, C(CH3)3), 0.82 (s, 
Si(CH3)2).
Synthesis of 3h. 2h (1.26 g, 1.45 mmol) and KHMDS (0.593 g, 
2.97 mmol) were stirred for three hours in benzene. Insoluble 
solids were filtered off and the filtrate was concentrated in 
vacuo. The residue was washed with pentane and dried under 
vacuum to yield 3h as a white solid. (0.600 g, 0.976 mmol, 67.4 
% yield). Spectral data matched literature.
Synthesis of 3i. 2i (1.26 g, 1.77 mmol) and KHMDS (0.705 g, 3.53 
mmol) were stirred for three hours in benzene. Insoluble solids 
were filtered off and the filtrate was concentrated in vacuo to 
yield 3i as an orange oil. (0.490 g, 1.07 mmol, 60.6 % yield). 1H 
NMR (600 MHz, C6D6) δ 6.63 (s, 1H, ImH), 6.60 (s, 1H, ImH), 4.03-
3.95 (m, 1H, Cy-CH), 3.51 (s, 2H, SiCH2), 1.97 (d, 2JHH = 9.0 Hz, 
2H, Cy-CH2), 1.63-1.56 (m, 4H, Cy-CH2), 1.44 (d, 2JHH = 12.6 Hz, 
1H, Cy-CH2), 1.16-1.08 (m, 2H, Cy-CH2), 1.03-0.95 (m, 1H, Cy-
CH2), 0.34 (s, 6H, Si(CH3)2). 13C{1H} NMR (151 MHz, C6D6) δ 212.8 
(s, N2C), 120.2 (s, C2N2C), 116.2 (s, C2N2C), 59.6 (s, Cy-CH), 43.0 

(s, CH2), 35.2 (s, Cy-CH2), 26.0 (s, Cy-CH2), 25.8 (s, Cy-CH2), 0.86 
(s, Si(CH3)2).
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