Influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ6-sulfanyl-ethan-1-ol (CF3SF4–ethanol) on the stabilization of the secondary structure of melittin: comparison with aqueous trifluoroethanol using molecular dynamics simulations and circular dichroism experiments

Abstract

The influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ6-sulfanyl-ethan-1-ol (CF3SF4–ethanol) and 2,2,2-trifluoroethanol (TFE) on the secondary structure of melittin was studied using circular dichroism (CD) and molecular dynamics (MD) simulations. In water, melittin transitions into a random coil. However, upon addition of even as little as 1% by volume of CF3SF4–ethanol, the secondary structure of melittin stabilizes as a helix. Contrarily, the addition of 40% by volume of TFE is required for the greatest helicity. Fluoroalcohols stabilize melittin's hydrophobic side chain residues, thereby enhancing the helical structure. Locally alcohol concentrations approach nearly 70–90% in the near vicinity of the hydrophobic side chains increasing hydrophobic interactions and reducing water–peptide hydrogen bonding. Using the molecular mechanics-Poisson Boltzmann surface area method (MMPBSA), the free energy of binding between the peptide and fluoroalcohols highlighted the role of nonpolar residues in stabilizing the secondary structure. Secondary structure content analysis (SESCA) validated the simulation results, confirming CF3SF4–ethanol as an effective, eco-friendly enhancer of helicity at low concentrations. The far UV circular dichroism (CD) spectrum of melittin in solutions containing TFE corroborates previous findings and likewise affirms that the addition of CF3SF4–ethanol to an aqueous solution can enhance helicity. The agreement between the experimental and calculated helicities highlights the potential of CF3SF4–ethanol. This study offers insights into peptide stabilization by fluoroalcohols, with implications for peptide-based therapeutic design.

Graphical abstract: Influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ6-sulfanyl-ethan-1-ol (CF3SF4–ethanol) on the stabilization of the secondary structure of melittin: comparison with aqueous trifluoroethanol using molecular dynamics simulations and circular dichroism experiments

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2024
Accepted
15 Dec 2024
First published
28 Dec 2024

Phys. Chem. Chem. Phys., 2025, Advance Article

Influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ6-sulfanyl-ethan-1-ol (CF3SF4–ethanol) on the stabilization of the secondary structure of melittin: comparison with aqueous trifluoroethanol using molecular dynamics simulations and circular dichroism experiments

S. Biswas, N. Pathak, L. Sutherland, A. A. Chen and J. T. Welch, Phys. Chem. Chem. Phys., 2025, Advance Article , DOI: 10.1039/D4CP02654C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements