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terization of RNA biomarker
fingerprints using a multi-modal ATR-FTIR and
SERS approach for label-free early breast cancer
diagnosis†
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Breast cancer is a prevalent form of cancer worldwide, and the current standard screening method,

mammography, often requires invasive biopsy procedures for further assessment. Recent research has

explored microRNAs (miRNAs) in circulating blood as potential biomarkers for early breast cancer

diagnosis. In this study, we employed a multi-modal spectroscopy approach, combining attenuated total

reflection Fourier transform infrared (ATR-FTIR) and surface-enhanced Raman scattering (SERS) to

comprehensively characterize the full-spectrum fingerprints of RNA biomarkers in the blood serum of

breast cancer patients. The sensitivity of conventional FTIR and Raman spectroscopy was enhanced by

ATR-FTIR and SERS through the utilization of a diamond ATR crystal and silver-coated silicon nanopillars,

respectively. Moreover, a wider measurement wavelength range was achieved with the multi-modal

approach than with a single spectroscopic method alone. We have shown the results on 91 clinical

samples, which comprised 44 malignant and 47 benign cases. Principal component analysis (PCA) was

performed on the ATR-FTIR, SERS, and multi-modal data. From the peak analysis, we gained insights into

biomolecular absorption and scattering-related features, which aid in the differentiation of malignant and

benign samples. Applying 32 machine learning algorithms to the PCA results, we identified key molecular

fingerprints and demonstrated that the multi-modal approach outperforms individual techniques,

achieving higher average validation accuracy (95.1%), blind test accuracy (91.6%), specificity (94.7%),

sensitivity (95.5%), and F-score (94.8%). The support vector machine (SVM) model showed the best area

under the curve (AUC) characterization value of 0.9979, indicating excellent performance. These findings

highlight the potential of the multi-modal spectroscopy approach as an accurate, reliable, and rapid

method for distinguishing between malignant and benign breast tumors in women. Such a label-free

approach holds promise for improving early breast cancer diagnosis and patient outcomes.
1. Introduction

Breast cancer is a signicant global health concern and remains
the most commonly diagnosed cancer in women worldwide. In
2020 alone, approximately 2.3 million new cases were reported,
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with a total of 7.8 million women living with breast cancer
diagnosed over the past ve years.1 Timely detection and treat-
ment are crucial for improving survival rates. Although
mammography, an X-ray imaging technique, serves as the
current gold standard for breast cancer screening, it has
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limitations, with approximately 20% of breast cancer cases going
undetected.2,3 Furthermore, the current mainstream diagnostic
tools, including mammography, magnetic resonance imaging
(MRI), and ultrasonography, oen yield false positives, leading to
undue stress for patients and additional diagnostic
procedures.3–6 Therefore, there is an unmet clinical need for
a rapid, accurate, and reliable test for breast cancer screening.
One potential solution lies in the detection of biomarkers,
specically circulating microRNAs (miRNAs), which have shown
promise in differentiating between individuals with and without
cancer, particularly for those with abnormal mammograms.7–9

MiRNAs are small, non-coding RNA molecules, approxi-
mately 22 nucleotides in length. They have emerged as prom-
ising biomarkers for cancer detection due to their stability and
abundance in body uids such as serum and plasma.10,11 Unlike
other RNA molecules, miRNAs possess specic structures that
render them resistant to degradation by nucleases. This unique
characteristic makes them attractive candidates for early cancer
detection, as miRNA expression patterns have been found to be
deregulated in cancer patients. Moreover, miRNAs exhibit wide
distribution in various organs, indicating their potential utility
in personalized medicine. Although existing detection tech-
niques such as quantitative reverse transcriptase polymerase
chain reaction (RT-qPCR) and next-generation sequencing
(NGS) demonstrate high sensitivity and specicity,12–14 their
utilization can be expensive and time-consuming due to the
need for chemical labeling. Hence, there is a demand for faster
and more affordable methods for miRNA detection.

Fourier transform infrared (FTIR) spectroscopy is a powerful
tool for analyzing the chemical composition and molecular
structure of biological samples. This technique measures the
absorption of light by the sample, providing a molecular
ngerprint that can detect changes associated with disease
progression. The attenuated total reection FTIR (ATR-FTIR)
spectroscopy utilizes a high refractive index crystal. When
infrared light is incident on the crystal, it creates an evanescent
wave due to differences in refractive indices between the crystal
and the sample. This means that only the molecules in close
proximity to the crystal surface interact with the evanescent
wave, leading to a stronger signal for a thin layer of the sample
compared to traditional FTIR. ATR-FTIR spectroscopy has the
potential for rapid and accurate detection of miRNAs for early
cancer diagnosis and personalized medicine.15–19 Raman spec-
troscopy provides molecular information and can have sensi-
tivity enhanced by surface-enhanced Raman scattering (SERS)
to detect low-concentration samples.20,21 SERS utilizes nano-
roughened surfaces coated with metal (like copper, silver, or
gold), called planar SERS substrates, or metal colloidal nano-
particles to enhance the Raman signal, enabling the detection
of miRNA ngerprints at very low concentrations. Both ATR-
FTIR and SERS techniques are label-free techniques that have
been used for the detection of biomolecules in various biolog-
ical samples.22–25

Previous studies have demonstrated the potential of FTIR
and SERS techniques for sensitive and accurate detection and
analysis of nucleic acids.26–28 For instance, D. Li et al. and Y. Li
et al. utilized SERS to detect miRNA and RNA bases,
3600 | RSC Adv., 2024, 14, 3599–3610
respectively, achieving improved sensitivity.29,30 Rios et al.
employed FTIR spectroscopy to detect DNA polymorphisms
with high accuracy using machine learning algorithms.31

Geinguenaud et al. utilized FTIR spectroscopy to study RNA
structures, identifying key vibrational modes associated with
RNA sugar puckering, backbone vibrations, phosphate stretch-
ing, and protein secondary structures.32 These studies under-
score the potential of using spectroscopy techniques for
sensitive and accurate detection and analysis of nucleic acids.

Concurrently, the integration of machine learning and che-
mometrics with spectroscopy has gained interest not just for
medical diagnostics,33–35 but also for applications such as food
quality control, detection of chloramphenicol in food prod-
ucts,36 and the comparative study of chemometric challenges in
food analysis.37 The energy sector is similarly evolving with
these methodologies. Progress in dye-sensitized solar cells is
attributed to insights into interfacial effects in solid–liquid
electrolytes,38 the effect of polymer electrolytes at the nano-
scale,39 and the tuning of properties in carbazole photosensi-
tizers.40 Supercapacitors, another essential energy storage
technology, have also beneted from machine learning, as seen
in the work on laser-induced graphene-based capacitors.41

In this paper, we present a novel multi-modal spectroscopy
approach for early breast cancer diagnosis using combined
ATR-FTIR and SERS data. Our study involved the measurement
of 91 clinical samples with malignant and benign diagnoses
previously conrmed through histopathology analysis. We
explored a total of 32 machine learning models, each with
varying training, validation, and blind test ratios, for the clas-
sication task using ATR-FTIR alone, SERS alone, and the
combined multi-modal data. The results showed that the multi-
modal approach achieved the best performance, with a valida-
tion accuracy of 95.1% and a test accuracy of 91.6%. Among the
machine learning models, the support vector machine (SVM)
outperformed others, demonstrating an impressive area under
the curve (AUC) value of 0.9979. This outcome demonstrates
that multi-modal spectroscopy provides complementary infor-
mation and improves the accuracy of miRNA detection. Our
label-free and rapid testing method, assisted by machine
learning, offers a comprehensive characterization of the
molecular ngerprints of biomarker molecules and high accu-
racy in early breast cancer diagnosis.

2. Materials and methodology
2.1. Samples

The sample collection and processing procedures are similar to
our previous study.19 Serum samples for the analysis of micro-
RNAs (miRNAs) were obtained from peripheral blood samples
collected at the National Cancer Centre Singapore (Singapore)
and Tan Tock Seng (Singapore) prior to biopsy and surgery.
Additional serum samples were obtained from the SingHealth
Tissue Repository (Singapore). These samples were not
purchased or donated. The study followed the principles of the
Declaration of Helsinki with approval from the Centralized
Institutional Review Board of SingHealth (CIRB Ref: 2018/2874).
Written informed consent was obtained from all participants.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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A total of 91 samples were included in this study, with 44
diagnosed as malignant and 47 as benign based on histopa-
thology analysis. To minimize the impact of confounding
factors and technical biases in data analysis, pre-analytical
factors, including sample collection, handling, processing,
and storage, were standardized.10 Blood samples were collected
and promptly processed within 50–60 minutes of venipuncture
to separate serum from whole blood. The serum samples were
aliquoted and stored at −80 °C to prevent freeze–thaw cycles,
with only non-hemolyzed samples used in this study. Subse-
quently, total RNA was isolated from 200 mL of serum using the
miRNeasy Serum/Plasma Advanced Kit (Qiagen, N.V.), following
the manufacturer protocol. An additional step involving the
addition of bacteriophage MS2 RNA to the sample lysis buffer (1
mg mL−1 of QIAzol) was included to enhance the RNA yield.
Total RNA extraction was performed using the same reagents
and procedures for all 91 samples.
2.2. Experimental setup

The study employed ATR-FTIR and SERS techniques to analyze
miRNA samples for early breast cancer diagnosis. ATR-FTIR
spectroscopy, as illustrated in Fig. 1(a), utilizes an incident
beam from a globar source that enters an ATR crystal with
a high refractive index. Through total internal reection, the
beam is reected at the crystal–sample interface, creating an
evanescent wave that penetrates the sample. During this inter-
action, specic frequencies of light in the infrared range are
absorbed by the sample, resulting in characteristic absorption
bands. The reected beam carries the spectral information of
the absorbed frequencies and is directed toward the FTIR
detector. ATR-FTIR spectroscopy provides valuable insights into
the molecular composition and interactions within the sample,
making it a powerful analytical technique for various applica-
tions. In this study, an ATR-FTIR system (Vertex 80v with ATR
diamond crystal accessory, Bruker) was used to obtain spectra
from 10 mL of miRNA samples under a vacuum condition. Each
clinical sample was subjected to 20 measurements sequentially
without changing the sample. For each measurement, an
Fig. 1 (a) ATR-FTIR spectroscopy uses a beam from a globar source en
interacts with the sample, absorbing specific infrared frequencies. The
detector. (b) SERS uses laser light to detect enhanced scattered photon
metal-coated surfaces (SERS substrates). Interaction with laser light am
nanopillars, offering detailed molecular insights for precise sample detec

© 2024 The Author(s). Published by the Royal Society of Chemistry
average was taken based on 64 scans at a resolution of 4 cm−1.
All these measurement results were then used for subsequent
analysis. The vacuum condition ensured that the collected data
was free from interference by water vapour,19 as shown in the
ESI, Fig. S1.†

As depicted in Fig. 1(b), SERS involves the illumination of the
sample with laser light and the detection of the enhanced
inelastically scattered photons through the plasmonic effect.
Enhancement of Raman signal is achieved by depositing the
sample on nano-roughened metal-coated surfaces called SERS
substrates. Here, SERS substrates were fabricated on silicon
wafers, and nanostructures were in the form of nanopillars,
which were formed using the inductively coupled plasma-based
blanket etching method. The size of nanopillars was typically
∼200 nm in height, and it was coated with a 150 nm layer of
silver.42 When the laser light interacts with the sample, due to
the localized electric eld enhancement generated by the silver-
coated nanopillars, resulting in amplifying the Raman signal of
the molecules in the proximity. This enhanced Raman scat-
tering provides detailed molecular information, enabling
sensitive and selective detection of the sample. SERS offers
immense potential for various applications, including chemical
analysis and biosensing.43 SERS measurements were conducted
using a Raman microscope system (Invia, Renishaw) integrated
with a Leica microscope. The laser light (785 nm) was coupled
through a long working distance objective lens (50×, 0.5 NA) to
excite the sample and collect the scattered Raman signal. The
clinical miRNA samples (10 mL) were pipetted onto the bare
SERS substrates, and enhanced Raman signals were collected in
backscattering geometry. Multiple measurements were taken at
20 different locations (∼20 mm apart) on the substrate, and
averaged spectra were used for analysis. The spectral measure-
ments were performed with a laser power of ∼450 mW.
2.3. Data processing workow

The workow of the sample preparation, data collection, and
data analysis is illustrated in Fig. 2. The raw data underwent
pre-processing steps before machine learning analysis, which
tering an ATR crystal. Through internal reflection, an evanescent wave
reflected beam, carrying this information, is then directed to the FTIR
s via plasmonic effects. The sample is deposited on nano-roughened,
plifies the Raman signal due to the electric field from silver-coated
tion.

RSC Adv., 2024, 14, 3599–3610 | 3601
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included baseline correction, Savitzky–Golay smoothing,
removal of noisy and atmospheric peaks, and normalization.
The processed ATR-FTIR and SERS data were combined based
on the wavelength. ATR-FTIR wavenumber was converted to the
wavelength using eqn (1), and the SERS Raman shi was
Fig. 2 Workflow illustrating the process of sample preparation; data coll
FTIR alone, SERS alone, and multi-modal; machine learning, and final
specificity.

3602 | RSC Adv., 2024, 14, 3599–3610
converted to the wavelength using eqn (2), where lex = 785 nm.
Aer the conversion, the ATR-FTIR data ranged from 2 to 20 mm,
and SERS data ranged from 0.8 to 0.9 mm. Consequently, the
combined multi-modal data spanned from 0.8 to 20 mm with
a gap of 1.1 mm from 0.9 to 2 mm.
ection using ATR-FTIR and SERS techniques; data processing for ATR-
output including validation accuracy, test accuracy, sensitivity, and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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lðmmÞ ¼ 104

wavenumberðcm�1Þ (1)

lðmmÞ ¼ 10�3

1

lexðnmÞ �
Raman shiftðcm�1Þ

107

(2)

Machine learning algorithms were applied to the processed
ATR-FTIR data, SERS data, and multi-modal data separately.
The steps included principal component analysis (PCA), model
training, and prediction of test results. The outcomes were
evaluated using ve parameters: validation accuracy, test
accuracy, sensitivity, specicity, and F-score.

2.4. Machine learning methods

In this study, a total of 32 different machine learning models
were developed and trained using MATLAB (R2022a, Math-
Works). During the model training process, PCA and cross-
validation methods were implemented to enhance the accu-
racy and robustness of the models.

2.4.1. Data preparation. The dataset consisting of spec-
troscopic measurements of 91 samples was divided into
training and test datasets. To assess the model performance,
6 different sets of blind test samples (i.e., not overlapping
with the training and validation datasets) were selected,
including 5, 10, 15, 20, 25, and 30 test samples. The
remaining samples were utilized for training and validation
purposes to construct the machine learning models. Table 1
provides a breakdown of the sample splitting, indicating the
ratio of test samples to training + validation samples. To
eliminate potential biases in the test dataset, each ratio was
run three times, with each run employing a randomly
selected test sample set.
Table 1 Breakdown of sample splitting for machine learning datasets w
samples is 91, with 44 being malignant and 47 being benign samples

Ratio Run

Training + validation samples Test sam

Malignant Benign Total Maligna

0.058 1 41 45 86 3
2 43 43 1
3 42 44 2

0.123 1 39 42 81 5
2 41 40 3
3 40 41 4

0.197 1 36 40 76 8
2 37 39 7
3 38 38 6

0.282 1 33 38 71 11
2 34 37 10
3 34 37 10

0.379 1 31 35 66 13
2 31 35 13
3 32 34 12

0.492 1 28 33 61 16
2 29 32 15
3 29 32 15

© 2024 The Author(s). Published by the Royal Society of Chemistry
Ten-fold cross-validation and PCA were employed for
training the models. Ten-fold cross-validation involved parti-
tioning the dataset into ten sets of data, with one set used for
validation and the other sets utilized for training. This meth-
odology ensured that the models were trained on different
datasets, promoting greater generalization and robustness. As
the spectral data used in this study had high dimensionality,
PCA was employed to reduce the computational requirements.
The Origin soware (2022a, OriginLab) was utilized to perform
PCA by generating a scree plot and identifying the elbow point
to determine the optimal number of principal components
(PCs). PCA was conducted for each data method (ATR-FTIR,
SERS, and Multi-modal).

2.4.2. Types of models. The machine learning algorithms
used in this study encompassed decision trees, discriminant
analysis, logistic regression, näıve Bayes, SVM, k-nearest
neighbors (KNN), ensemble models, neural networks, and
kernel approximations. A list of the models is provided in the
ESI, Table S1.† The selection of these models allowed for
a comparison of their performance on different datasets.
Decision trees utilize conditions to make decisions and branch
into different branches based on predictor values and trained
weights. Discriminant analysis classies data based on
Gaussian distributions, while logistic regression employs
a sigmoid curve as a decision boundary. Näıve Bayes classiers
utilize the Bayes theorem to calculate the probability of
a sample belonging to a particular class. SVMs utilize separating
hyperplanes to distinguish data points, and KNN models clas-
sify samples based on the classes of their nearest neighbors.
Ensemble models combine weaker techniques such as bagging
and boosting to create a more robust ensemble model. Neural
networks consist of layers of neurons with weights that are
trained during model training, while kernel approximations
transform lower-dimensional data into higher-dimensional
ith different test vs. training + validation ratios. The total number of

ples Total samples

nt Benign Total Malignant Benign Total

2 5 44 47 91
4
3
5 10
7
6
7 15
8
9
9 20

10
10
12 25
12
13
14 30
15
15

RSC Adv., 2024, 14, 3599–3610 | 3603
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data using kernel functions, enabling linear classiers such as
planes to separate data points belonging to different classes.

2.4.3. Model selection. The performance of the models was
evaluated using various metrics, including validation and test
accuracy, the discrepancy between the validation and test
accuracy, specicity, sensitivity, and F-score. Models with
a discrepancy exceeding 15% were excluded to prevent over-
tting. These metrics were calculated using the true positive
(TP), false positive (FP), true negative (TN), and false negative
(FN) values obtained from the confusion matrix, as shown in
eqn (3)–(5).

Sensitivity ¼ TP

TPþ FN
(3)

Specificity ¼ TN

TNþ FP
(4)

F -score ¼ 2� TP

2� TPþ FPþ FN
(5)

3. Results and discussion
3.1. Molecular ngerprints

Fig. 3 presents the average of the measurement results obtained
using both ATR-FTIR and SERS techniques. Fig. 3(a) displays
the normalized absorption spectra of a malignant sample (red)
and a benign sample (blue) as measured by ATR-FTIR spec-
troscopy. Two distinct ngerprint regions are observed: one
ranging from 500 to 2000 cm−1 and the other from 2500 to
3500 cm−1. This characteristic is consistent across all samples.
To validate our measurement accuracy and reproducibility, we
also measured synthetic miRNA samples, observing similar
features as shown in the ESI, Fig. S2.† Additionally, it can be
noted that the peak wavenumbers are nearly identical for both
sample types, but the relative peak intensities differ. For
instance, the differences in peak intensities at 1066 cm−1,
1541 cm−1, and 3340 cm−1 are smaller for the malignant
samples compared to the benign samples. Moreover, the width
of the broad peak from 2500 to 3500 cm−1 is larger for the
malignant samples than for the benign samples. Fig. 3(b)
illustrates the peak wavenumbers and their corresponding
chemical bonds and vibrational groups for DNA and RNA
molecules, as documented in the literature.32,44,45 The most
prominent peak wavenumber in both malignant and benign
spectra is observed at 1657 cm−1, corresponding to C2]O2
stretching in cytosine or guanine. The second notable peaks are
located at 3188 cm−1 and 3340 cm−1, corresponding to O–H
stretching and N–H stretching, respectively. It is worth
mentioning that the peak intensity at 1066 cm−1 is more
pronounced in malignant samples than in benign samples,
corresponding to PO2

− symmetric stretching.
On the other hand, the SERS spectra in Fig. 3(c) reveal

limited molecular ngerprints. The most prominent peak is
observed at 1010 cm−1, accompanied by a small peak at
446 cm−1. The functional groups associated with these peaks
are depicted in Fig. 3(d), with 1010 cm−1 representing CC
3604 | RSC Adv., 2024, 14, 3599–3610
aromatic ring chain vibrations and 446 cm−1 indicating CC
aliphatic chains.

Fig. 3(e) showcases the multi-modal spectra. The smaller
wavelength region represents the SERS spectra, while the larger
wavelength region represents the ATR-FTIR spectra. Notably,
aer the wavelength conversion, the ATR-FTIR spectra were
horizontally ipped. It is evident that the number of SERS peaks
is considerably lower than that of the ATR-FTIR peaks.
3.2. Visual peak analysis

PCA is a powerful approach for reducing and interpreting large
multivariate datasets with linear structures, enabling the
discovery of previously unsuspected relationships. In this study,
PCA was applied to the ATR-FTIR, SERS, and multi-modal data,
as depicted in Fig. 4. By utilizing PCA, we were able to investi-
gate the relationship between the light absorption and scat-
tering intensities of biomolecules and their respective
wavelengths, while also determining the optimal number of PCs
to retain. A scree plot, serving as a visual aid, was employed to
identify the appropriate number of PCs. The number is deter-
mined by locating the “elbow” point where the remaining
eigenvalues become relatively small and of comparable size.

In Fig. 4(a), the scree plot for the ATR-FTIR data is presented.
Although the elbow point is not distinctly apparent, we consider
the third point as the elbow point. Fig. 4(b) illustrates the
loading with reference wavenumber plot for the ATR-FTIR data,
showcasing the loading patterns of PC1, PC2, and PC3. These
PCs collectively account for 87.2% of the total variance, with
PC1 contributing 64.1%, PC2 contributing 11.8%, and PC3
contributing 11.3%. The vertical lines on the plot indicate the
important wavenumbers for each PC. Notably, PC1 is associated
with signicant wavenumbers at 1061 cm−1 and 3423 cm−1,
with respective loading values of −0.09 and 0.02. For PC2, the
inuential wavenumbers include 1011 cm−1, 3192 cm−1, and
3367 cm−1, with corresponding loading values of 0.05, −0.05,
and −0.07. In PC3, the crucial wavenumbers are 1061 cm−1 and
3367 cm−1, with respective loading values of −0.07 and −0.04.
These ndings align with the spectra presented in Fig. 3(a),
where 1061 cm−1 corresponds to PO2

− symmetric stretching
and 3367 cm−1 corresponds to N–H stretching.46,47 Notably, the
important wavenumbers for each PC correspond to specic
chemical bonds or functional groups that are signicant in
differentiating between malignant and benign samples. These
chemical bonds or functional groups play a vital role in DNA
and RNA structures, and their variation can provide insights
into the differences between malignant and benign DNA/RNA
solutions.48

For the SERS data, Fig. 4(c) showcases the scree plot, indi-
cating the sixth point as the elbow point. Fig. 4(d) presents the
loading with reference Raman shi plot for the SERS data,
illustrating the loadings of the rst three PCs. PC1 accounts for
37.0% of the total variance, PC2 for 21.8%, and PC3 for 7.8%.
The vertical lines on the plot correspond to important Raman
shis for each PC. PC1 is characterized by signicant Raman
shis at 441 cm−1, 738 cm−1, and 1003 cm−1, with respective
loading values of 0.13, 0.07, and 0.08. In PC2, the inuential
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Molecular fingerprint measurements of malignant (red curves) and benign (blue curves) samples. ATR-FTIR: (a) normalized average
spectrum with labeled peak wavenumbers and (b) corresponding chemical bonds. Two distinct fingerprint regions are observed: one ranging
from 500 to 2000 cm−1 and the other from 2500 to 3500 cm−1. SERS: (c) normalized average spectrumwith labeled peak wavenumbers and (d)
corresponding chemical bonds. Multi-modal: (e) average spectrum of ATR-FTIR and SERS where the ATR-FTIR wavenumber units and SERS
Raman shift units were converted to wavelength units based on eqn (1) and (2).
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features include 441 cm−1 and 738 cm−1, with loading values of
−0.12 and −0.04, respectively. PC3 is characterized by the
prominent Raman shis at 1003 cm−1 and 1012 cm−1, with
respective loading values of 0.29 and−0.27. Notably, the Raman
shis at 441 cm−1 and 738 cm−1 are important in both PC1 and
PC2, while 1003 cm−1 exhibits more inuence in PC1 and PC3.
These ndings are consistent with the spectra depicted in
Fig. 3(c), where 441 cm−1 corresponds to CC aliphatic chains,
© 2024 The Author(s). Published by the Royal Society of Chemistry
738 cm−1 is likely due to CC alicyclic and aliphatic chain
vibrations, and 1003 cm−1 may be associated with aromatic ring
chain vibrations. These molecular features are relevant to DNA
and RNA structures and exhibit variations that contribute to the
distinction between malignant and benign samples.49

Fig. 4(e) displays the scree plot for the multi-modal data,
with the third point identied as the elbow point. Fig. 4(f)
illustrates the loading with reference wavelength for the multi-
RSC Adv., 2024, 14, 3599–3610 | 3605
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Fig. 4 Results of principal component analysis. ATR-FTIR data: (a) scree plot indicating the third point is the elbow point and (b) loading with
reference wavenumber plot showing PC1, PC2, and PC3 characteristic wavenumbers (marked in blue) and their corresponding loading values
(marked in black). SERS data: (c) scree plot indicating the sixth point is the elbow point and (d) loading with reference wavenumber plot showing
PC1, PC2, and PC3 characteristic wavenumbers (marked in blue) and their corresponding loading values (marked in black). Multi-modal data: (e)
scree plot indicating the third point is the elbow point and (f) loading with reference wavenumber plot showing PC1, PC2, and PC3 characteristic
wavenumbers (marked in blue) and their corresponding loading values (marked in black). It is shown that the ATR-FTIR data dominate in the
characteristics than the SERS data in the multi-modal approach.
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modal data, highlighting the contributions of the rst three
PCs. PC1 accounts for 62.1% of the total variance, PC2 for
11.8%, and PC3 for 10.4%. The vertical lines on the plot denote
the important wavelengths for each PC. Notably, 2.94 mm is
a signicant wavelength in both PC1 and PC2, while 9.38 mm
exhibits more inuence in PC1 and PC3. These ndings align
with the spectra depicted in Fig. 3(e). Importantly, it is worth
3606 | RSC Adv., 2024, 14, 3599–3610
noting that all the signicant features originate from the ATR-
FTIR data region. This observation suggests that the ATR-FTIR
technique is notably more efficient than the SERS technique
in classifying malignant and benign breast cancer miRNA
biomarkers. More advanced SERS techniques may be explored
to improve its detection efficiency, such as introducing an
interfacial agent or aggregating agent.29,30
© 2024 The Author(s). Published by the Royal Society of Chemistry
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In summary, the application of PCA to the ATR-FTIR, SERS,
and multi-modal data provides valuable insights into the rela-
tionships between biomolecular absorption or scattering
intensities and their corresponding wavenumbers or wave-
lengths. By identifying important wavenumbers and wave-
lengths associated with specic chemical bonds or functional
groups, PCA enables the differentiation between malignant and
Fig. 5 Machine learning results for various ratios of (training + validatio
sensitivity, (d) specificity and (e) F-score where SERS data is shown in purp
blue. The numbers on the bar plots indicate the average values of the thre
ROC curves (solid lines) and AUC values (legend values) for the multi-m

© 2024 The Author(s). Published by the Royal Society of Chemistry
benign miRNA solutions, contributing to the classication of
breast cancer biomarkers.

3.3. Machine learning results

In this section, we will discuss the results and analysis of the
machine learning models developed for breast cancer diagnosis
using spectral data from three different methods – ATR-FTIR,
n)/test samples. Plots of (a) validation accuracy, (b) test accuracy, (c)
le, ATR-FTIR data is shown in orange, andmulti-modal data is shown in
e runs and the error bars indicate the standard deviation. (f) Plots of the
odal data for each ratio.
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SERS, andmulti-modal spectroscopy. The selection criterion for
choosing the best model for each dataset was based on high
validation and test accuracies, small validation-test accuracy
discrepancy, high sensitivity, specicity, and F-score. The
average value and standard error were calculated across
different runs for each ratio of (training + validation)/test
samples of each measurement method, and these values were
used for plotting, as shown in Fig. 5.

Fig. 5(a) and (b) depict the validation and test accuracy
results, respectively. The average values of the three runs for
each split ratio are represented on the bar plots, with standard
deviations shown as error bars. The multi-modal data approach
exhibits the highest validation accuracy, reaching an impressive
95.1%. With a validation accuracy of 95.1%, we can anticipate
approximately 95 correct predictions out of every 100 samples
tested. This accuracy level is comparable to the histopathology
diagnosis with articial intelligence assistance and surpasses
the histopathology diagnosis alone, indicating its potential as
a superior diagnostic tool.50–52 Notably, as the ratio increases,
the accuracy also demonstrates improvement. However, even
with a low ratio, a consistently high test accuracy of 69.5% is
maintained. It is important to highlight that the SERS accuracy
exhibits greater variations from the expected increasing trend,
which can be attributed to the relatively fewer features present
in the SERS data compared to ATR-FTIR and the multi-modal
data. Moreover, the SERS accuracy generally tends to be lower
than the ATR-FTIR accuracy, while the multi-modal accuracy
surpasses both individual accuracies. This disparity can be
explained by the additional information provided by the multi-
modal spectroscopy data, which enhances the accuracy of the
diagnostic predictions.

Fig. 5(c)–(e) present the results of the sensitivity, specicity,
and F-score analyses. The multi-modal approach outperforms
the ATR-FTIR and SERS data methods individually, achieving
the highest sensitivity, specicity, and F-score, all at an
impressive value of around 95%. This signies the model ability
to accurately classify 95 out of 100 true positive and true nega-
tive samples. Moreover, an increase in the ratio leads to
improved sensitivity, specicity, and F-score. Notably, even at
a low ratio, a consistently high sensitivity, specicity, and F-
score of approximately 70% are maintained. It is important to
note that the SERS data exhibits a less discernible trend in
sensitivity, specicity, and F-score values. This behavior can be
attributed to the relatively fewer features available in the SERS
spectra, potentially limiting the model ability to capture the
differential features required for distinguishing between
malignant and benign classes. In addition, we have identied
that the best models are the SVM, KNN, and SVM for ATR-FTIR,
SERS, and multi-modal data methods, respectively.

Fig. 5(f) displays the receiver operating characteristic (ROC)
curves and corresponding AUC values for the multi-modal data
at each ratio. The color code is indicated in the legend. A perfect
classier would exhibit a true positive rate (sensitivity) of 1.0
and a false positive rate (1-specicity) of 0.0, while a random
classier is represented by the dashed line. The AUC value
ranges from 0.0 to 1.0, with 1.0 indicating a perfect model. Our
best AUC value of 0.9979 is achieved at the (training +
3608 | RSC Adv., 2024, 14, 3599–3610
validation)/test ratio of 86/5 using SVM, and the value generally
decreases as the number of test samples increases, with the
exception of the 76/15 ratio. Notably, even at the 61/30 ratio, our
results demonstrate a relatively high AUC of 0.8571. These
ndings suggest promising discrimination capabilities in dis-
tinguishing between malignant and benign samples.
4. Conclusions

In conclusion, this study highlights the potential of utilizing the
multi-modal spectroscopy approach for the detection of miRNA
biomarkers in early breast cancer diagnosis. By combining the
highly sensitive ATR-FTIR and SERS techniques, complete
ngerprint proles of the biomarkers were obtained. Notably,
the ATR-FTIR technique provided a broader range of ngerprint
proles across a wider wavelength range compared to SERS.
Machine learning analysis demonstrated the highest accuracy
(95.1%) in classifying malignant and benign cases when
utilizing the multi-modal approach. These ndings indicate the
effectiveness of the proposed approach for accurate and reliable
label-free breast cancer diagnosis. Furthermore, the approach
can be generalized to other biomarker types, including proteins
and lipids, thereby expanding its potential applications in
various areas of biomedical research. Overall, this study
contributes to the development of a robust and versatile
spectroscopy-based approach for early cancer detection and
holds promise for future advancements in the eld.
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Electrochim. Acta, 2018, 292, 805–816.

41 M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella,
S. Ferrero and A. Lamberti, Adv. Sustainable Syst., 2022, 6,
2100228.

42 J. Perumal, U. Dinish, A. Bendt, A. Kazakeviciute, C. Y. Fu,
I. L. H. Ong and M. Olivo, Int. J. Nanomed., 2018, 13, 6029–
6038.

43 J. Perumal, Y. Wang, A. B. E. Attia, U. S. Dinish and M. Olivo,
Nanoscale, 2021, 13, 553–580.

44 M. Banyay, M. Sarkar and A. Gräslund, Biophys. Chem., 2003,
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