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Tuning quantum interference through molecular
junctions formed from cross-linked OPE-3
dimers†
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This study highlights a novel strategy for tuning the electrical conductance of single molecules by cross

linking the molecules to form a dimer. By studying the electrical conductance of dimers formed by

cross linking OPE monomers, we demonstrate that the appearance of destructive or constructive

quantum interference in cross-linked OPE-based dimers is independent of the nature of the molecular

cross link. Instead, the type of the interference is controlled by the connectivity to external electrodes

and is determined by the presence or otherwise of meta-connected phenyl rings in the transport path.

This is expected to be an important design feature, when synthesising molecules with cross links of

different stiffnesses for thermoelectric energy harvesting, since it shows that the stiffness (and hence

phonon transport properties) can be tuned without affecting the nature of the electronic quantum

interference.

Comprehending charge transport through single molecules or
self-assembled monolayers (SAMs), is an essential goal of
molecular electronics research.1–3 To realize this target, various
strategies have been developed to measure the conductance,
current–voltage characteristics, inelastic electron tunneling
spectra, transition voltage spectra (TVS), and current-induced
local heating of single molecules located between two
electrodes.4–7 Theories of electron transport in single-
molecule junctions are built on the concept that electrons
passing through a molecule from a source electrode to a drain
electrode are phase coherent and that the energy E of the
electron does not change during the passage.8–10 Consequently,
if the source–drain voltage is small, the electrical conductance
G of the molecular junction is given by the Landauer formula
G = G0T(EF), where G0 is the quantum of conductance and T(EF)
is the transmission coefficient, evaluated at the Fermi energy EF

of the electrodes.

Typically, EF lies within the energy gap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) of the molecule and consequently
certain simplifications arise, which would not occur if EF

coincided with either of the HOMO or LUMO energy levels.
For example, the electrical conductance of OPE-like molecules
is measured to be proportional to the cosine-squared of the
dihedral angle between neighbouring phenyl rings8 and theory
shows that this occurs, because EF lies within the HOMO–
LUMO gap.11,12 We have chosen OPE3 dimers as examples of
cross-linked molecules, because their monomer counterparts
have been studied extensively in the literature, both for their
quantum-interference-derived properties13–18 and their thermal
properties.19,20

In the current work, we address the question of how
electrical conductances of linear molecules change when a
chemical cross link is introduced between pairs of molecules
to form dimers. We study the conductance of molecular dimers
composed of a series of cross-linked OPE3 molecules, and we
derive useful rules for predicting their transport properties,
based on identification of the dominant transport paths for
electrons passing through the dimers. These transport proper-
ties are also rationalised by identifying quantum interference
features associated with frontier orbitals, taking into account
their energy level spacings and degeneracies.

To form a cross-linked dimer, we started from the well-
studied oligophenyleneethynylene (OPE3) molecule, which is
known to be a highly conjugated molecular conductor. Next, we
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linked two OPE3s together by bridges formed from either an
alkane chain to create 1 or a highly conjugated phenyleneethy-
nylenechain to create 2, as shown in Fig. 1.

Computational methods

All the theoretical simulations were carried out using the density
functional (DFT) code SIESTA.21 The optimised geometries of
isolated cross-linked dimers were obtained by relaxing the cross-
link dimers until all forces on the atoms were less than
0.01 eV Å�1 (for more detail see optimised DFT structures of
isolated structures see Fig. S1, ESI†). We used a double-zeta plus
polarization orbital basis set, norm-conserving pseudopotentials,
the local density approximation (LDA) exchange correlation func-
tional, and to define the real space grid, an energy cutoff of
250 Rydbergs. We also computed results using GGA and found
that the resulting structures were comparable,22–24 with those
obtained using LDA. The electronic properties of the cross-linked
(C-L), dimers were modelled using a combination of DFT and
quantum transport theory. We are interested in computing the
electrical conductance of each dimer when a source electrode
makes contact with one of the thiols and a second (drain)
electrode makes contact with a different thiol. Since these C-L
dimers (labelled 1 and 2 in Fig. 2), possess four terminal thiol end-
groups, we computed transport properties with 6 distinct pairs of
contacts to electrodes. For each of the two C-L dimers, the highest
occupied molecular orbital (HOMO), lowest unoccupied orbital
(LUMO), and their neighbours (i.e., HOMO�1, LUMO+1 etc),
along with their energies are shown in Fig. S3 and S4 (ESI†). In
the absence of the bridges, since two isolated OPE3s each possess
identical orbital energy levels, the energy levels of the decoupled
dimer are doubly degenerate. In the presence of a bridge, each
degenerate pair is weakly coupled and the degeneracy is slightly
lifted. Consequently, as shown in Fig. S3 and S4 (ESI†), the LUMO
and LUMO+1 of each dimer are almost degenerate and similarly
the HOMO and HOMO�1 are almost degenerate.

Our aim is to compute the electrical conductances of these
OPE3 dimers (1–2), when only two of the four thiols are
contacted to two metal electrodes and the current passes from
one electrode to another via the dimer. As shown in Fig. 2, if the
thiols are labelled 1 to 4, then there are 6 choices of thiol pairs,
namely 1–3, 2–4, 1–2, 3–4, 1–4 and 2–3. To anticipate the role of
quantum interference, we note that the triple bond labelled ‘a’
is para connected to triple bond ‘b’, and following the discus-
sion in ref. 25 since para (and ortho) connectivity corresponds
to constructive quantum interference (CQI), electrons travelling
from thiol 1 to thiol 3 are expected to experience CQI and the
corresponding electrical conductance is expected to be high.
Similarly, since triple bond ‘e’ is para connected to triple bond
‘f’, electrons travelling from thiol 2 to thiol 4, or from thiol 1 to
thiol 3 are expected to experience CQI, leading to high electrical
conductance. On the other hand, triple bond ‘a’ is ortho
connected to triple bond ‘c’, and triple bond ‘e’ is meta
connected to triple bond ‘d’. Since meta connectivity corre-
sponds to destructive quantum interference (DQI), electrons
travelling from thiol 1 to thiol 2, or from thiol 3 to thiol 4, or
from thiol 1 to thiol 2 are expected to experience DQI, leading to
low electrical conductance. It should be noted that electrons
travelling from thiol 1 to thiol 2 pass through the ortho path ‘a’–
‘c’, and the meta path ‘d’–‘e’. Similarly, from thiol 3 to thiol 4,
there is a meta path ‘b’-‘c’ and an ortho path ‘d’-‘f’. Since the
meta paths leads to DQI the conductance of molecules con-
nected to electrodes via the thiol pairs 1–2 or 3–4 is expected to
be low up to this point four thiol pairs are explored 1–3, 2–4, 1–
2, 3–4 and the predicted trend is either CQI (1–3 and 2–4) or
DQI (1–2 and 3–4). Next we consider the electrical conductance
when electrodes are connected to thiols 1 and 4 or 2 and 3.
Since the 1–4 path includes ortho ‘a’–‘c’ and ortho ‘d’–‘f’, we

Fig. 1 Two OPE3 molecules cross-linked by two different bridges to form
molecules 1 and 2. Each molecule possesses four thiol terminal end-
groups (SH).

Fig. 2 Four different sulphur atoms can connect to external electrodes as
6 different pairs, namely 1–3, 2–4, 1–2, 3–4, 1–4, 2–3. 1–3 = 2–4: para–
para (P–P), 1–2 = 3–4: ortho–meta (O–M), 1–4: ortho–ortho (O–O), and
2–3: meta–meta (M–M).
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expect it to exhibit CQI and high electrical conductance. In
contrast, the 2–3 connectivity to electrodes involves the meta-
connected paths ‘e’–‘d’ and ‘c’–‘d’, leading to DQI and therefore
low electrical conductance is anticipated.

To examine the above quantum interference predictions, we
construct a Hückel (i.e., tight binding, TB) Hamiltonian,26–37

which captures the dependence of the conductance for the two
cross-linked dimers on their connectivity to electrodes. The
Hamiltonian matrix comprises of diagonal elements Hjj = ej,
which describe the energy ej of an electron on site j and nearest
neighbour off-diagonal elements Hij, which describe hopping
integrals between neighbouring sites l and j. All other matrix
elements are set to zero. If all the sites were identical, then the
simplest model would be obtained by setting all ej = 0 (which
defines the zero of energy) and all nearest neighbour coupling
equal to �1, which sets the energy scale. Such a Hamiltonian is
a simple connectivity table, whose entries Hij are equal to �1
when two atoms i and j are connected and are zero otherwise.

When semi-infinite one-dimensional crystalline leads are
coupled to sites 1 and 3, the resulting transmission coefficient
T(E) is shown as the red-solid curve in Fig. 3. The smooth
nature of this curve near the middle of the HOMO–LUMO gap
(E = 0) indicates the presence of CQI. Similarly, coupling to sites
2 and 4, leads to CQI, as indicated by the smooth nature of the
red-dotted curve near E = 0. On the other hand, when electrodes
are linked to sites 1 and 2 or 3 and 4, the green-solid/-dotted
curves are produced. These curves possess sharp dips near
E = 0, signaling the presence of DQI.38–44 For electrodes con-
nected to sites 1 and 4 the purple-sold curve is produced and
exhibits CQI, whereas for electrodes connected to sites 2 and 3,
the light green-sold curve is produced, which possesses a DQI
dip. These results for a tight binding model with a single bond
Hij forming the bridge between the monomers, which is the

simplest model of 1, in which an alkane chain bridges the
dimer. Tight binding transmission coefficients of cross-linked
dimers 1 and 2 demonstrate that the bridging linker has no
influence on the presence of CQI or DQI in the transmission
curves, because the two dimers exhibit roughly the same curves
for the 6 different pairs of contacts, as demonstrated in Fig. S5
and S6 (ESI†).

To compare with the TBM results we performed DFT trans-
port simulations for the two C-L dimers, each with 6 different
pairs of connectivities to electrodes. To simulate the likely
contact configuration during a break-junction experiment,
we employed gold metal electrodes constructed from 6 layers
of Au (111), each containing 30 gold atoms and further termi-
nated with a pyramid of gold atoms. After relaxing each
molecular junction, we calculated the transmission coefficient
for each of the two molecules shown in Fig. 1, using the Gollum
quantum transport code36 (for more details, see DFT-based
transport simulations section in the ESI†).

Fig. 4, shows zero bias transmission coefficients T(E),
obtained from density functional theory, for 6 different elec-
trode connectivities to dimer 1. This figure displays 6 transmis-
sion functions; three of them show CQI, while the other three
show DQI. In agreement with the tight binding results and the
above discussion, these show that DQI arises when the trans-
port path contains one of more meta connected phenyl rings.

TBM results are in qualitative agreement with the DFT
transmission coefficients of the studied molecules, as shown
in Fig. S5 of the ESI.† Both TBM and DFT approaches demon-
strate that in the presence of the 1–3, 2–4 and 1–4 connectivities,
there is no signature of a DQI. However, the same dimers with
1–2, 3–4 and 2–3 connectivities switch from CQI to DQI regard-
less to the bridging linker chemical structure. The main quali-
tative difference between the DFT results and the TBM results
arise from the fact that the tight-binding model is a nearest-
neighbour bipartite lattice, in which atoms can be labelled, such

Fig. 3 Transmission coefficients, obtained from the tight binding model
(TBM), for 6 different connectivities to electrodes (see Fig. 2) tp cross-
linked, dimer 1. Curves for the para connected junctions 1–3 and 2–4
(red-solid and red-dotted lines) are identical, as are the curves for ortho
connected and meta connected junctions 1–2 and 3–4 (green-solid and
green-dotted lines). Transmission coefficients of the ortho–ortho con-
nected and meta–meta connected junctions 1–4 and 2–3 are purple-
solid and light green-solid lines. Note: TBM detail, the coupling parameter
g = �1 and on energy sites of carbon and sulphur are eC = 0 and eS = 0.

Fig. 4 Zero bias transmission coefficients T(E), obtained from density
functional theory (DFT), in 6 different possible pairs contact points (see
Fig. 2). Cross-linked, dimer 1: para connected junctions 1–3 and 2–4 (red-
solid and red-dotted lines), ortho connected + meta connected junctions
1–2 and 3–4 (green-solid and green-dotted lines), ortho connected +
ortho connected and meta connected + meta connected junctions 1–4
and 2–3 (purple-solid and light green-solid lines).
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that odd numbered atoms interact with even numbered atoms
only and vice versa. This chiral symmetry guarantees that the
transmission coefficient is a symmetric function of the electron
energy E. In the DFT simulation, this symmetry is not present,
because next-nearest-interactions are present. The DFT results
(S7–S20, ESI†) demonstrate that the presence or otherwise of
DQI is insensitive to the nature of the bridging linker and
confirm that 1–3, 2–4 and 1–4 are high conductance connectiv-
ities due to CQI, whereas 1–2, 3–4 and 2–3 are low-conductance
connectivities, due to the presence of DQI.37–42

In summary, using density functional theory and a tight-
binding model, we have demonstrated that the appearance of
destructive or constructive quantum interference in cross-
linked OPE-based dimers is independent of the nature of
the nature of the molecular cross link. Instead, the nature of
the interference is controlled by the connectivity to external
electrodes and is determined by the presence or otherwise of
meta-connected phenyl rings on the transport path. This is
expected to be an important design feature, when synthesising
molecules with cross links of different stiffnesses, because it
means that the stiffness and hence phonon transport proper-
ties can be tuned, whilst maintaining CQI or DQI.

In the literature, and as discussed in a recent textbook,8

there are many demonstrations of quantum interference effects
in monomer molecules, starting with the first demonstration
DQI42 in 2011 and including more recent demonstrations of QI,
such as ref. 43–45 switching in ref. 46–49 and QI in graphene
junctions.50–52 In contrast, the present paper breaks new
ground, by investigating and demonstrating quantum interfer-
ence effects in cross-linked dimers. These results have several
experimental consequences. For example, when applied for
experimental systems based on break junction experiments,
where all connectivities would be sampled, our calculations
lead to the prediction that conductance histograms with multi-
ple peaks would be measured, corresponding to both CQI
(high conductances) and DQI (low conductances). In addition,
in a break junction experiment, they predict the appearance of
qualitatively distinct pulling curves. In one type of a curve,
electrodes will maintain e.g., a 1–3 connectivity and the junc-
tion will break cleanly, leading to a single dominant conduc-
tance plateau. In another, the junction may jump from a 1-3
connectivity to a 3-2 connectivity before breaking, leading to
two distinct plateaus in a pulling curve.

In the case of SAMs, if both thiols 3 and 4 are initially bound
to a substrate and a top contact such as graphene is added,
then the 1–3, 2–4 connectivities will act in parallel, leading to
CQI and high conductance. In contrast, if the staggered con-
formations in Fig. 1 are realised, then only the 3-2 connectivity
will be relevant, leading to CQI and low conductance. This leads
to a new strategy for achieving novel memristive switching
behaviour in SAMs, in which a functional cross-linker is
employed, whose rigidity can be switched in response to an
external stimulus, which in turn causes the molecule to switch
between a staggered and non-staggered conformation. The
associated switching from a high to low electrical conductance,
with an on–off ratio of up to 6 orders of magnitude (see Fig. 4)

would be ideal for in-memory, vector-matrix multiplication in
deep neural networks.
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