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-based machine learning model
refined by cluster analysis for accurately predicting
adsorption energies on bimetallic alloys†

A. F. Usuga, a C. S. Praveen bc and A. Comas-Vives *ad

Exploring the vast chemical compound space to provide activity–site relationships on bimetallic catalysts

presents significant challenges. It also raises the necessity of developing methodologies capable of

overcoming the cost of the computational screening of high-performing heterogeneous catalysts. In the

present contribution, we introduce machine learning models enhanced by local descriptors related to

the adsorption site for predicting adsorption energies. Additionally, we combined them with cluster

analysis to bring valuable tools to detect anomalies in the database, thus enhancing the accuracy and

robustness of the predictive models. This approach accurately predicts the adsorption energies of

several species containing C, N, S, O, and atomic H adsorbed on AB-type bimetallic alloys with

stoichiometric variation of A : B ratios. Among all the evaluated ML-based architectures, the CatBoost

model exhibits the best performance with a MAE of 0.019 eV and 0.174 eV for the training and test sets,

respectively. The cluster analysis highlights the importance of constructing descriptors containing

physicochemical-intuitive insight for describing the bonding interactions. This methodology facilitates

the recognition of electronic-structural trends of the surrounding local active site, thereby becoming

a potential tool to screen adsorption energies and, ultimately, the catalytic activity.
1 Introduction

Improving existing catalytic materials for emerging technolo-
gies is a resource-intensive and arduous task. Among hetero-
geneous catalysts, bimetallic alloys have gained signicant
attention in this context,1 primarily due to their unique ability
to modulate their electronic properties as a function of the
composition.2 These materials are highly promising for catalytic
applications due to the versatility of modifying their composi-
tion,3 morphology, and exposed facets.4 The turning point in
utilizing these alloy-based materials is marked by establishing
trends linking their activity to various structural and electronic
parameters. Density Functional Theory (DFT) calculations are
a key asset in rationalizing the catalytic activity at the atomic
level and screening novel catalytic materials.5 However, the
computational cost of DFT simulations still limits the
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exploration of the vast chemical compound space and hinders
the high-throughput computational screening of catalytic
materials. While DFT calculations can establish correlations,
such as scaling relations, between bonding interactions and
a simple descriptor on monometallic systems, these correla-
tions with single linear descriptors oen fall short in capturing
trends for the case of metallic alloys.6–10 When transition
metals-based catalysts are involved in reactionmechanisms, the
d-band center is widely used as a descriptor to determine the
reactivity, which characterizes the chemisorption based on the
electronic structure within the d-band theory.11,12 However, the
accuracy of the d-band center diminishes when dealing with
specic transition metals and fails to encompass attributes
important in catalysis, such as the adsorption site and type of
adsorbate.

Therefore, developing models to explore the vast chemical
compound space and establishing connections between bime-
tallic alloys, their intrinsic characteristics, and their corre-
sponding activity presents a signicant challenge. Additionally,
the models must account for synergetic effects as the bi-
functional activity resulting from the diversity of available
active sites.13 A workaround to alleviate the resource-intensive
DFT calculations is to embrace methodologies based on
Machine Learning (ML) models.14–18 ML-based models can
potentially yield an accuracy comparable to DFT by effectively
capturing complex and non-linear patterns. The progression of
ML-based models to incorporate catalysts–adsorbates
This journal is © The Royal Society of Chemistry 2024
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interactions has increased the evaluated system's sizes and the
number of active sites in the surface models, including mate-
rials with strongly localized active sites to extended materials
with several and delocalized ones. For strongly localized
congurations, ML models have been applied to clusters,19–22

single-atom catalysts represented by 2D layered materials,23–26

and monometallic surfaces doped with Transition Metals
(TMs).27–29 The model's accuracy usually relies on the suitability
of the features in describing the localized chemical environ-
ment of the adsorption site.

In extended systems, it is, however, not obvious to select
structural descriptors that can accurately capture the bonding
strength between different metallic alloys and adsorbates. The
proposed descriptors can be broadly categorized into two main
groups: averaged properties and local chemical features.
Descriptors based on averaged properties emphasize the
signicance of incorporating details about each metal
composing the alloy.30–33 Furthermore, including a combination
of semi-empirical parameters, such as geometric and tabulated
atomic information, capable of differentiating between
different surface alloys, enhances accuracy and robustness.34–36

Similarly, predictive models incorporating electronic properties
such as the d-band center,37–40 Bader charges,41 and surface
energy42,43 display better accuracy in capturing bonding inter-
actions. These predictive models can effectively screen a broad
spectrum of bimetallic systems.

These models may address limitations in describing prop-
erties that depend on the specic adsorption site. However,
applying these proposed methodologies is constrained in
systems with diverse morphologies, potentially losing insight
into the factors determining the chemical adsorption strength.
In this context, it has been suggested to incorporate descriptors
that inherently rely upon the catalyst's active site to improve the
poor differentiation in the clustering and prediction of bonding
interactions.44–46 Among the most relevant local chemical
descriptors proposed to date, those focused on correlating the
nearest neighboring surface atoms to the adsorption site have
gained signicant attention. These descriptors include the
average of elemental properties,47 atom-specic ngerprints
derived from elemental properties,48,49 and use ML models
based on neural networks,50–52 or graph neural networks.53–56

However, these descriptors have difficulties adapting to other
adsorbates or ML-based model architectures, hindering their
transferability to other systems. Alternatively, performing
separate correlations for each adsorbate and adsorption site is
possible,57–59 but this approach diminishes the extrapolation
ability of the ML-based model.

The current work proposes a machine learning-based
methodology to elucidate the catalytic activity of materials
built upon bimetallic alloys. We present a strategy that employs
ML-based models to establish correlations between the
adsorption energy and the adsorption site for various adsor-
bates. We use predictive model architectures based on Linear
Regressors (LR) and Random Forest Regressors (RFR) enhanced
by gradient-boosting. Clustering techniques based on dimen-
sion reduction from the Uniform Manifold Approximation and
Projection (UMAP) methodologies are then used, serving as
This journal is © The Royal Society of Chemistry 2024
anomaly detectors in the database. The present work lays the
ground for a robust and universal method to predict the
chemical bonding strength; it allows an extensive sampling of
the chemical compound space dened by the local chemical
environment of the adsorption site on bimetallic surfaces and
the adsorbates. This study is directed towards comprehensively
describing the surrounding local active site. The catalyst data-
base consists of bimetallic alloys with AnBm stoichiometry, and
the adsorbates are primarily composed of C, O, N, H, and S. The
descriptors are formulated using electronic, geometrical, and
atomic-elemental properties. These features employ heuristics
to avoid human intervention during their construction. This
methodology enables the identication of structural-electronic
patterns within the local active site environment, serving as
a valuable tool in catalyst discovery. Furthermore, the suggested
analysis provides a methodology for recognizing accuracy-limit
factors that affect high-dimensional models. Proposing an
approach where only single-point DFT calculations on the clean
surface and gas-phase adsorbate are needed before training the
ML-based model.

2 Methodology
2.1 Dataset

The developed framework for predicting the adsorption energy
on bimetallic alloys requires the optimized geometries of the
clean surface, the gas-phase adsorbate, and the adsorbate over
the surface. All the structures were selected from an already
reported dataset at the Catalysis Hub repository.60 The dataset
focuses on (111) and (101) facets of FCC bimetallic alloys with
A : B stoichiometric ratios of 0%, 25%, 50%, 75%, and 100%
between the two elements. The original database was created to
predict reaction energies for several elementary reactions. We
extracted the relaxed geometries of the adsorbed species on
metal surfaces from the database and performed further DFT
calculations to set up descriptors for the clean metallic surfaces
and the free adsorbates in the gas phase, respectively.

The dataset consists of alloys with A atoms (Ag, Au, Cu, Fe,
Pt, or Zn) and B atoms encompassing all metals from groups 3
to 15 and from periods IV to VI, including Al. The chosen
adsorbates are C, CH, CH2, CH3, H, N, NH, O, OH, H2O, S, and
SH, amounting to a total of 17 343 points in the database. The
selected structures include several adsorption sites, namely top,
bridge, and hollow. Additionally, the screening process explores
several local environments for each adsorption site, obtained by
considering a combination of neighboring atoms A and B, as
reported in the original dataset. The target property is the
adsorption energy of the adsorbates on the metallic surfaces,
calculated as follows:

Ebin = Eads/surf − (Esurf + Eads)

2.2 Computational details

The parameters for the simulations were adopted from the re-
ported dataset.60 The calculations were carried out within the
J. Mater. Chem. A, 2024, 12, 2708–2721 | 2709
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periodic density functional theory (DFT) framework with the
plane wave-based Quantum ESPRESSO code.61 We performed
spin-polarized single-point energy calculations using the BEEF-
vdW functional on the optimized geometries collected from the
database. An optimized collection of ultraso pseudopotentials,
taken from the open-source GBRV high-throughput pseudopo-
tentials library, was employed for describing the core elec-
trons.62 The kinetic energy cutoff for wavefunctions and charge
density were taken as 35 and 350 Ry, respectively. The Brillouin
zone was sampled via the Monkhorst–Pack scheme with a 4 × 4
× 1 gamma-centered grid.
2.3 Model architecture and implementation

2.3.1 Supervised machine learning models. We used
supervised machine learning models to predict adsorption
energies from labeled data. The present approach for predicting
the adsorption energy as the target variable builds upon our
own prior ndings in monometallic systems,63 where the best-
performing models employ analogous descriptors to describe
non-linear trends based on Random Forests Regressors (RFR)
enhanced by gradient-boosting architectures. The RFR models
constitute an ensemble learning method that elaborates on
multiple decision trees. The predicted target variable is deter-
mined by averaging the predictions from the individual trees.
Besides, gradient boosting is employed to augment the perfor-
mance of decision trees. Its objective is to sequentially train
trees that minimize the loss function by considering the
gradients derived from it. We have chosen three regressor
architectures based on gradient-boosting: XGBoost,64 Cat-
Boost,65 and LightGBM.66 In the rst two architectures, the tree
expansions follow a depth or level-wise approach, while in the
latter, the tree expansions start with a single leaf, resulting in
a leaf-wise growth strategy that enhances learning speed.

We also implemented linear regression-based architectures,
such as Multiple Linear Regression (MLR) and Kernel Ridge
Regression (KRR), to compare their performance with non-
linear methods. To assess the performance of the models, we
opted for the Mean Squared Error (MSE) and Mean Absolute
Error (MAE) metrics as our chosen evaluation criteria. These
error metrics are essential for quantifying the deviation of our
framework from DFT results. Additionally, gaining insights into
the inuence of each descriptor on our proposed model is
crucial. To address this, we employ the technique proposed by
Lundberg and Lee,67 known as SHapley Additive exPlanations
(SHAP). SHAP deconstructs a prediction into a sum of contri-
butions from each descriptor, where each contribution corre-
sponds to a SHAP value. This technique identies the most
relevant correlations between the input features and the pre-
dicted outcome, providing valuable insights into the model's
functioning.

2.3.2 Supervised clustering model. While our framework
primarily focuses on using the proposed descriptors to predict
the adsorption energy, we also explore potential trends derived
from the same. Our model incorporates an extensive array of
descriptors, forming a complex system that poses challenges
when dealing with its high dimensionality. To address this
2710 | J. Mater. Chem. A, 2024, 12, 2708–2721
limitation, we have used a strategy for reducing the dimen-
sionality of the model via the Uniform Manifold Approximation
and Projection (UMAP) technique.68 When comparing various
methods to reduce the dimensionality, UMAP stands out for its
ability to better preserve the local and global structure of the
data. The global structure refers to the degree of closeness
among various clusters, while the local structure provides
insights into the internal trends within a cluster. This quality
proves highly valuable for assessing data similarity within
clusters, enabling comparisons between neighboring clusters.
Reduced dimensions offer insight into data similarity,69 while
individual values within these reduced dimensions lack
inherent physical signicance. Thus, we utilize the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)
clustering method, implemented within the Scikit-Learn ML
library, to comprehend the distribution of reduced dimensions
using the labeling provided for the DBSCAN method.70 The
applicability of DBSCAN method is well suited for clusters
characterized by compactness and distinct separation, a crite-
rion met in the present case.
2.4 Model training

Given the varying magnitudes of the proposed descriptors, we
applied a Robust Scaler transformation using the preprocessing
tools of Scikit-learn70 to normalize the features. Next, we
randomly divided the dataset into training and test sets with
70–30 split ratio. Fine-tuning of hyperparameters is carried out
based on the loss function metrics and further validated using
K-fold cross-validation, employing 10 splits. We considered key
parameters such as the number of estimators, maximal depth,
and learning rate to enhance the accuracy of the gradient-
boosting-based regressor models. The models were trained
with simultaneous variations of these key parameters, and the
optimal combination was selected based on smaller average
errors and deviation in the splits of the K-fold methodology. We
adjusted the number of estimators in increments of 200,
ranging from 300 to 1500. The learning rate was explored within
a range of 0.06 to 0.20, with increments of 0.02, and maximal
depth was varied from 3 to 10. Finally, we evaluated the
minimum number of training samples and L2 regularization to
reduce over-parametrization. Theminimumnumber of samples
in the leaf was varied from 0 to 10, while the L2 regularization
was evaluated from 0 to 2.0 in increments of 0.02. The tuning of
each hyperparameter was carefully balanced to avoid over- and
under-parametrized models, aiming at models with optimal
predictive capabilities. For the KRR model, the only parameters
to tune are the type of kernel and L2 regularization. Detailed
information containing the parameters used for each model is
provided in Table S1† of the Electronic Supplementary Infor-
mation (ESI).†
3 Results and discussion
3.1 Feature engineering

The descriptors used for training our machine learning models
were exclusively derived from the relaxed congurations of the
This journal is © The Royal Society of Chemistry 2024
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clean metal surfaces and the gas-phase adsorbates, employing
heuristics to minimize intervention. The modeling of adsorp-
tion energy is performed with a set of 34 descriptors. The
descriptors are organized separately for the surface and adsor-
bate and categorized into structural, electronic, and atomic/
elemental properties. Our methodology involves constructing
descriptors that capture the localized chemical environment of
the adsorption site. This methodology for the surface inherently
incorporates the geometrical inuence associated with the
adsorption conguration into most of the proposed features.
The construction of surface-related descriptors follows the
workow shown in Fig. 1a. The methodology is based on
assembling a sphere on the top of the surface, where the surface
atoms inside the sphere are considered responsible for the
bonding interactions in the local environment. The sphere's
center is 1.5 Å above the top layer (Z-axis coordinate), and the
XY-axis coordinates are determined from the relaxed adsorbate
on the surface, as shown in Fig. 1b and c. Although the relaxed
coordinates are used to set the sphere, the trained model can be
used with arbitrary XY-axis coordinates for predicting the
Fig. 1 (a) Schematic workflow of the construction of the surface-relate
over the surface. (c) Establishing the atomic coordinates for the center o

This journal is © The Royal Society of Chemistry 2024
adsorption energy at that specic site. The nal value for each
feature is computed as the average property across all atoms
contained within the cutoff sphere. The radius and height of the
sphere were varied until suitable values for the general coordi-
nation number for every adsorption site were obtained. Still,
these heuristics can be modied to compute the features with
more or fewer atoms to model complex catalysts or surfaces
with higher Miller indices. Electronic and geometric features
are obtained from the DFT calculations, while atomic/elemental
features are derived from atomic-tabulated properties. In
addition, features like the Fermi energy, d-band center, and the
work function were also used, although they do not inherently
include geometric effects.

Furthermore, we use numerical values to represent different
adsorption site types, i.e., 1, 2, 3, and 4 for the top, bridge, fcc-
hollow, and hcp-hollow, respectively. The labeling for every site
is based on the assigned labeling of the database from which we
extract the structures. Finally, the descriptors related to gas-
phase adsorbates are developed by considering only the
primary element that bonds to the surface, which in the present
d features. (b) Extraction of the xy-coordinates for the adsorption site
f the cutoff sphere of the top surface layer.

J. Mater. Chem. A, 2024, 12, 2708–2721 | 2711
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case are C, H, N, O, or S. As our database does not include a large
number of adsorbates and due to the representation approach,
the adsorbate-related features are numerically stratied. The
properties used in constructing the descriptors are not only
proposed to correlate the adsorption energy but also contribute
to providing interpretable physical insights about bonding
interactions, as we will show later. A complete list of the used
features can be found in the ESI (Table S2†).

3.2 Performance of features

We rst explored the correlations between the proposed
descriptors and the adsorption energy. Fig. 2 shows Pearson's
coefficients, indicating the strength of linear relationships
between two attributes, with values closer to ±1.0 signifying
stronger correlations. In our case, we observed a weak or near-
zero correlation between each descriptor and the adsorption
energy. However, it is important to note that linear models
frequently fall short in capturing the intricate behavior of
adsorption on bimetallic alloys, particularly when considering
various types of adsorbates and adsorption sites, as we aim to
incorporate in our model. In addition, linear correlations from
common descriptors, such as the d-band center, oen yield
inadequate single-descriptors for adsorption energies. A
moderate single-feature linear correlation is evident between
the number of surface atoms directly bonded with the adsorbate
(denoted as “atoms_surf”) and the coordination number and
the electronic density at the adsorption site (denoted as
“stm_surf”). However, this correlation does not extend to the
adsorption energy. It is worth emphasizing that “atoms_surf”
directly encodes the adsorption site using a numerically cate-
gorical stratication. This implies no discernible trend in
adsorption energy based on adsorption sites and type of
adsorbates. Thus, it is expected that Machine Learning (ML)
models able to capture non-linear patterns will exhibit an
Fig. 2 The linear correlation with Pearson's coefficients between the fea
(a) the clean surface and (b) the gas-phase adsorbate.

2712 | J. Mater. Chem. A, 2024, 12, 2708–2721
improved performance in linking the proposed descriptors with
adsorption energies. However, these models must support
interpretability to extract physicochemical insights.71,72

Subsequently, we evaluated different machine learning
regressor architectures to assess if we could enhance the
performance of the model to predict adsorption energies via
local chemical environment descriptors when changing from
linear to highly complex non-linear models. The linear predic-
tive model used is based on Multiple Linear Regressors (MLR),
while the selected non-linear models correspond to Random
Forest Regressors (RFR) enhanced by gradient boosting, in
particular, CatBoost, XGBoost, and LightGBM. Additionally,
a modication of the linear architecture with a kernel is
employed, particularly a Kernel Ridge Regression (KRR). The
results of our implemented ML-based models are summarized
in Tables 1 and 2. The MLR-based model showcases the weakest
overall performance, consistent with the trends observed in the
single-feature linear scores from Pearson's coefficients. By
employing the KRR-basedmodel, we observed that mapping the
descriptors with a Laplacian Kernel leads to a signicant
improvement. The KRR implementation achieved an average
error and R2 accuracy score in the training set close to that of
RFR-based models. The random forest regressor-based models
show a similar R2 accuracy score but slightly higher for the
XGBoost model. The CatBoost model displays a higher degree of
deviation or bias for the 10 splits of the K-fold methodology. In
contrast, the XGBoost outperforms the others concerning the
bias in the training set.

To determine the most robust model, comparing the
regression metrics for both the training and test sets is needed.
While the Mean Squared Error (MSE) penalizes higher-biased
points and tends to favor models with smaller robustness.
Therefore, to overcome the mentioned MSE limitations, our
analysis is based on the Mean Absolute Error (MAE). Using this
tures and adsorption energy. The data is divided into features related to

This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3TA06316J


Table 1 Summary of the performance of the evaluated ML-based
models. Mean accuracy and standard deviation for 10 splits on the K-
fold methodology

ML-based model R2 (Accuracy score) Standard deviation %

CatBoost 0.908 1.032
XGBoost 0.910 0.847
LightGBM 0.904 0.883
Kernel ridge 0.900 0.990
Linear regression 0.780 1.452
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metric, the CatBoost model exhibits superior performance with
a MAE of 0.166 eV for the training set and 0.280 eV for the
testing set, followed by the XGBoost model with MAEs of 0.175
and 0.289 eV for the training and test data, respectively.

To thoroughly evaluate the performance of our machine
learning-based models, we assess their predictive accuracy for
the chemical adsorption strength in both training and testing
sets. All RFR architectures perform similarly, with average
accuracy of greater than 0.90 (Table 1) and similar MAE and
Table 2 Summary of the performance of the evaluated ML-based archite
the training and testing datasets: Mean Absolute Error (MAE), Mean Squa

ML-based models
MAE of
train [eV]

MSE of
train [eV]

CatBoost 0.166 0.116
XGBoost 0.175 0.105
LightGBM 0.170 0.104
Kernel ridge 0.151 0.105
Linear regression 0.671 0.848

Fig. 3 Parity plot of DFT-calculated vs. ML-predicted adsorption energi

This journal is © The Royal Society of Chemistry 2024
MSE values for the train and test sets (Table 2). Among them,
the CatBoost architecture has the smallest MAE value, but
presents a higher deviation via the K-fold methodology
compared to XGBoost and LightGBM algorithms: 1.032% vs.
0.847 and 0.833%, respectively. Rationalizing the bias in the
CatBoost model requires comparing predicted and reference
values of adsorption energies. Fig. 3 illustrates the parity plots,
depicting the relationship between DFT-calculated and ML-
predicted adsorption energies. At rst glance, the CatBoost
model may seem to predict energies with a higher bias than the
XGBoost model. However, the CatBoost model has fewer scat-
tered data points, suggesting that the CatBoost model performs
better overall in MAE, as it has a higher number of points with
a smaller MAE than the XGBoost one. The XGBoost and Cat-
Boost models have similar RFR architecture, but with our
features and hyperparameters, the CatBoost architecture is
more effective in correlating them with the bonding strength.
The predictive models generally display non-uniform deviation
in specic points, particularly with higher deviations falling
within the adsorption energy range of−4.0 to 0.0 eV. This range
includes weak adsorption strengths, where the CatBoost model
ctures, including the metric of the average errors and R2 score for both
red Error (MSE), and R2 score

R2 score
of train

MAE of
test [eV]

MSE of
test [eV]

R2 score
of test

0.970 0.280 0.279 0.927
0.973 0.289 0.262 0.932
0.973 0.299 0.279 0.928
0.973 0.308 0.319 0.917
0.781 0.660 0.823 0.786

es for (a) the CatBoost and (b) XGBoost models.
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tends to overestimate the adsorption energy. The observed
behavior suggests that our proposed descriptors may not be
adequately congured to capture the bonding interactions
associated with these specic data points, an aspect evaluated
via cluster analysis (vide infra).

Then, we use the SHAP methodology to obtain the impact of
each suggested descriptor. The SHAP methodology evaluates the
inuence of individual descriptors, providing graphical insights
into the most impactful features on the adsorption energy. In
Fig. 4 the SHAP values are summarized, comparing the CatBoost
and XGBoost models. When comparing both models, it becomes
apparent that the most inuential features are generally alike.
However, a notable distinction arises in the CatBoost model,
where there is a more pronounced reduction in the impact of
each feature. This implies that the CatBoost model forces more
features to correlate with the adsorption energy. The most
inuential is the d-partial orbital charge. This outcome aligns
with expectations, considering the known dependency of the d-
band for bonding interactions in bimetallic catalysts.12,73

Similarly, other signicant surface-related descriptors
following the same trend are the number of surface atoms
directly bonded with the adsorbate (“atoms_surf”) and the s-
partial orbital charges. Regarding descriptors related to the
adsorbate, the HOMO energy of the adsorbate (“HOMO_ads”)
and the number of hydrogen bonds in the adsorbate (“H_ads”)
signicantly inuence the predicted adsorption energy. Taking
all the observed trends into account, as depicted in Fig. S1 and
S2,† it becomes evident that surface-related features exhibit
a more extensive inuence on predicting the output compared
to the relatively limited impact range of adsorbate-related
features. Grouping the effect of surface-related features from
Fig. S3–S5† in descending order, they are categorized into
electronic properties, geometric attributes, and elemental
information. Additionally, it can be deduced from the inuence
of the majority of elemental descriptors that these have a more
limited impact on the predictive models. Moreover, it is worth
noting that although the electronic properties and geometric
Fig. 4 Summary of the distribution of SHAP values for each descriptor
scale on the right is the same for both ML-based models.

2714 | J. Mater. Chem. A, 2024, 12, 2708–2721
attributes include the local description of the adsorption site,
they also account for surface structural effects partially
extending beyond the area of the surface site.

We further explore the correlations among the most inu-
ential features using the SHAP analysis methodology. Our
results reveal a categorical tendency between the HOMO of the
adsorbate (“HOMO_ads”) and the d-partial orbital charges of
the surface atom (“d_charge_surf”) features, as depicted in
Fig. S6.† This categorical trend is expected due to the strati-
cation employed in constructing the adsorbate-related features.
The stratication serves as a support for performing clustering
within our database. However, clustering the raw database is
difficult due to the challenges in analyzing a system with high
dimensionality. To decrease the complexity, we opted for a two-
dimensional database reduction to explore internal trends. We
applied the Uniform Manifold Approximation and Projection
(UMAP) methodology to reduce the data dimensionality of the
training set. The UMAP reduction is based on the similarity
function that preserves local and global information. The initial
clustering was performed on the reduced values for the raw
normalized database, as depicted in Fig. 5a. The clustering
results of the raw data reveal an inadequate clustering, gener-
ating indistinct trends in the adsorption energy between each
cluster. Cooper et al.74 suggested employing the SHAP values
instead of the raw data to improve the poor cluster differenti-
ation and get a better local structure in the data for each cluster.
Fig. 5b depicts the clustering using the SHAP values giving the
adsorption energy as a reference. It is clear that using the SHAP
values generates clusters better classied via the 2D reduced
features (Fig. 5a). The reduced data from the SHAP values
exhibits two discernible trends from the bonding interaction
range. Specically, data points within the middle to high range
of adsorption energy show signicant similarity, contrasting
with the lower values. Continuing extracting information into
the data, we have depicted the disparity between DFT-evaluated
and ML-predicted values in Fig. 5c. It is noticeable that the
points with higher bias are concentrated within specic
for the architectures: (a) CatBoost and (b) XGBoost. The feature value

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 Dimensionality reduction using the UMAPmethodology for (a) applied to all raw normalized data (involving the proposed descriptors) and
(b) the SHAP values specifically for the CatBoost model, with the 2D reduced dimension alongside adsorption energy employing the training set.
2D reduced dimension visualization of SHAP values using the CatBoost model for (c) the disparity between DFT-evaluated and ML-predicted
adsorption energies values for the points exhibiting higher bias (−1 eV> or 1 eV<), and (d) the surface atoms directly bonded to the adsorbate
(“atoms_surf”).
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clusters, indicating a signicant similarity between these
points. We labeled each cluster with each feature as a reference
to identify the responsible factors for reducing the accuracy of
our models.

Our analysis revealed that data points with an “atoms_surf”
equal to 1 within the middle to high adsorption energy range
introduce higher bias. In other words, some points representing
top adsorption sites exhibit lower correlation, as depicted in
Fig. 5d. Associating the results in Fig. 3 and 5d, we conclude
that our ML-based models tend to overestimate the weakest
bonding interactions when tting the highest adsorption
energies at the top sites. It should be noted that the points with
a MAE exceeding 1.0 eV account for only 4.3% of the training
set, representing a relatively small proportion. Potential solu-
tions to address this issue include increasing the sampling
within the range of weak adsorption strengths. Furthermore, it
is worth emphasizing the robust architecture of the gradient-
This journal is © The Royal Society of Chemistry 2024
boosting methodologies for minimizing the loss function, but
when the bias is still high, it does not always imply conserving
the physical insight of the model. We will show later this aspect
is solved via cluster analysis renement (vide infra).
3.3 Database enhanced with anomaly detectors

Supervised clustering serves to identify the internal correlation
of points with a higher bias, i.e., as an anomaly detection
technique. Employing this methodology, we removed the top
sites from the database to retrain the ML-based architectures.
Therefore, it allows analyzing the effect on the precision of our
proposed surrounding local environment descriptors and to
conrm whether the top sites need to be better accounted for in
our model and the database. The total number of points in our
database decreased from 17 343 to 13 894, representing
a reduction of 19.9%. Aer ltering out this data, the average
accuracy signicantly increases, with the CatBoost model
J. Mater. Chem. A, 2024, 12, 2708–2721 | 2715

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3TA06316J


Table 3 Summary of the performance of the evaluated ML-based
models extracting the top sites. Mean accuracy and standard deviation
for 10 splits on the K-fold methodology

ML-based model R2 (Accuracy score) Standard deviation %

CatBoost 0.975 0.388
XGBoost 0.974 0.463
LightGBM 0.975 0.475
Kernel ridge 0.967 0.465
Linear regression 0.855 1.243
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having the highest precision. Nevertheless, all RFR architec-
tures yield similar results. Regarding the metrics of averaged
errors used, i.e., the MAE, the results are consistent with the
predictive model for the entire database. The CatBoost
demonstrates the highest robustness, but XGBoost and
Fig. 6 Performance of ML-based model for the CatBoost methodology
vs.ML-predicted adsorption energies and (b) summary of the distribution
UMAP methodology for (c) applied to all raw normalized data (involving
CatBoost model, with the 2D reduced dimension alongside adsorption e

2716 | J. Mater. Chem. A, 2024, 12, 2708–2721
LightGBM architectures show comparable outcomes, as depic-
ted in Tables 3 and 4.

The decrease in dispersion within the predictive models,
excluding the top sites, is depicted in Fig. 6a. Moreover, Table 4
shows a notable reduction of 37.9% for the MAE and 58.1% for
the MSE on the test set compared to Table 2 for the CatBoost
model. For the training set, achieving a tting with minimal
deviation from the DFT-evaluated adsorption energy using the
proposed descriptors based on the surrounding local environ-
ment approach is achieved. Simultaneously, the inuence of
each feature on the predictive model appears to diminish, as
shown in Fig. 6b. Notably, the “atoms_surf” descriptor presents
a signicant reduction in its impact on the model. The elec-
tronic properties of both the surface and adsorbate still play
a crucial role in correlating the bonding interaction, just in this
case, described by the d-partial orbital charge at the surface and
the s-partial orbital charge at the adsorbate. Finally, we can
extracting top sites from the database. (a) Parity plot of DFT-calculated
of SHAP values for each descriptor. Dimensionality reduction using the
the proposed descriptors) and (d) the SHAP values specifically for the
nergy employing the training set.

This journal is © The Royal Society of Chemistry 2024
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Table 4 Summary of the performance of the evaluated ML-based architectures, including the metric of the average errors and R2 score for both
the training and testing datasets: Mean Absolute Error (MAE), Mean Squared Error (MSE), and R2 score

ML-based models
MAE of
train [eV]

MSE of
train [eV]

R2 score
of train

MAE of
test [eV]

MSE of
test [eV]

R2 score
of test

CatBoost 0.019 0.001 1.000 0.174 0.107 0.973
XGBoost 0.018 0.001 1.000 0.184 0.117 0.970
LightGBM 0.018 0.001 1.000 0.176 0.111 0.972
Kernel ridge 0.061 0.011 0.997 0.212 0.144 0.963
Linear regression 0.561 0.568 0.856 0.559 0.563 0.856
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observe a better separation between clusters using the raw
normalized data (Fig. 6c), and, therefore, the clustering based
on SHAP values (Fig. 6d). This suggests that achieving correla-
tions for the top sites in our dataset can be challenging andmay
not readily lead to an adequate t. In addition, removing the top
sites from our dataset also decreases the interference among
features, helping to mitigate over-parametrization.

By mitigating over-parameterization among features in the
predictive model, we can readily assess the impact of the
Fig. 7 2D reduced dimension visualization of SHAP values using the CatB
of hydrogen bonds in the adsorbate, (c) atomic radius in the adsorption

This journal is © The Royal Society of Chemistry 2024
proposed features with each cluster. To identify each cluster, we
initially assigned labels to them with the DBSCAN method, as
depicted in Fig. S7.† The primary factor inuencing the global
structure in the clustering is the type of absorbate, in our model,
the HOMO energy value of the adsorbate serves to identify each
adsorbate, as illustrated in Fig. 7a and shown in Table S3.†
Additionally, the global structure is inuenced by the number of
hydrogen bonds in the adsorbate (“H_ads”), as depicted in
Fig. 7b. The adsorbates that do not have hydrogen, such as C, N,
oost model for (a) the HOMO values for the adsorbate, (b) the number
site for the surface, and (d) d-partial orbital charge.
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S, and O, are close to each other, having global similarity,
implying a similar adsorption behavior. A similar trend is found
for adsorbates containing a main element and a single H atom
bonded to them, i.e., CH, NH, SH, and OH. However, when
more than two hydrogen atoms are present on the adsorbate
(“H_ads” exceeds 2), the similarity between adsorbates sharing
this attribute is lost.

Rationalizing the adsorption energy with the clustering
distribution, the electronegativity for the adsorbate helps to
explain trends within the bonding strength, as illustrated in
Fig. S8.† The smallest bonding interaction corresponds to
hydrogen, the element with the lowest electronegativity, while
higher adsorption energies are observed for C, N, S, and O.
Other observations from “H_ads” are extracted: as expected,
when the number of hydrogen atoms increases for C-based
adsorbates, the bonding strength decreases, i.e., C is the
adsorbate with the higher adsorption energy while the CH3

presents the lowest values. Furthermore, the bonding interac-
tion of C-based adsorbates depends on the p-partial orbital
charge of their C atom (denoted as “p_charge_ads”), when
“p_charge_ads” increases the bonding interaction is higher, as
observed in Fig. S9.† One specic case worth noting is the water
molecule (H2O), which generally exhibits the smallest values for
the bonding interaction. This outcome aligns with expectations,
given its stability. Regarding adsorbates with a single hydrogen
bond, it becomes evident that SH and OH share a more
signicant global similarity than CH and NH, which aligns with
the p-partial orbital charge of the adsorbate.

Explaining internal trends based on surface-related
descriptors can be complex due to the vast amount of infor-
mation involved. However, specic surface-related trends also
arise when examining clusters with adsorbates that do not
contain hydrogen. While Fig. 7a for the clusters for C, N, S, and
O suggests that the clustering only depends on the kind of
adsorbates, these adsorbates are divided into 10 different
clusters via the DBSCAN method (Fig. S7†). In Fig. S7,† the
breaking of the global similarity for C, N, S, and O is explained
by the behavior of the d-partial orbital charge (“d_charge_surf”)
observed in Fig. 7d.

Analyzing the two clusters associated with S in Fig. 7a, each
one depends on the “d_charge_surf” values. Furthermore, the
d-partial orbital charge is directly correlated with the average
atomic radius from the surface atoms at the adsorption site, as
depicted in Fig. 7c. The lowest values for the “d_charge_surf”
are mainly observed when the average atomic radius in the
adsorption site is about 2 Å.

In comparison, the highest values are associated with an
average atomic radius below 1.8 Å. Comparing Fig. 7d and 6d
shows that the adsorption energy slightly increases when the
“d_charge_surf” decreases. Simultaneously, this indicates that
the bonding interaction strengthens when the surrounding
local environment predominantly comprises atoms with
a higher average atomic radius. The clusters associated with C
present the same trend as S. Finally, both O and N show rela-
tively close global and local similarities. However, unlike S or C,
they display three distinct ranges for the d-partial orbital
charge, while there is a correlation between the adsorption
2718 | J. Mater. Chem. A, 2024, 12, 2708–2721
energy, atomic radius of the adsorption sites, and the d-partial
orbital charge.
4 Conclusions

In this contribution, we propose a methodology that addresses
two limitations in machine learning-based models for predict-
ing adsorption energies. First, it addresses the challenge of
combining various atom-based adsorbates, and second, it
considers the impact of the adsorption site on the chemical
binding strength. In this approach, we employ several descrip-
tors, based on the surrounding localized chemical environment
of the active site. Within this structure, the ML-based archi-
tecture, via the CatBoost model, shows the highest performance
toward predicting the adsorption energy. The electronic-related
features are most impactful in predicting the binding interac-
tion on surface-adsorbate systems, followed by the geometrical
features. In contrast, the atomic-related descriptors have the
lowest inuence on the performance of the model. The Cat-
Boost model has a MAE of 0.166 eV for the training set and
0.280 eV for the testing set.

The anomaly detection technique based on supervised
clustering allows us to get trends about the most biased pre-
dicted energies. Our model's higher biased points are related to
the top adsorption sites. Simultaneously, the top sites are
mainly correlated with the range of the weaker bonding inter-
action, where the correlationmay be improved by increasing the
sampling at this range. Upon extracting the top adsorption
sites, the CatBoost model considerably increases its perfor-
mance with its MAE, reaching 0.019 eV and 0.174 eV for the
training set and test set, respectively. However, it is worth
noting that the atomic-elemental-related descriptors play
a crucial role in describing physicochemical trends through the
supervised clustering methodology. The global and local simi-
larity in the clustering allows us to understand how factors such
as the atom-based adsorbates and the alloy's electronic struc-
ture correlate with the adsorbate-surface bonding interaction.
Our approach underscores features based on chemical intuition
in describing the bonding interaction, such as the HOMO
energy values for the adsorbate and the d-partial orbital occu-
pancy of the metal surface atoms, although they need to be
complemented with several additional features to obtain an
accurate prediction of the adsorption energy. Besides, the
information extracted via supervised learning not only works as
an anomaly detection technique, enhancing the mathematical
performance of the high-dimensional model but also yields
insights with physical coherence and valuable meaning toward
the chemical bonding. Further modications of the approach
are envisaged to predict the adsorption energy for more
complex adsorbates, such as bidentate binding modes or larger
adsorbates, and aspects that will be subject to future work.
Data availability

The ML-based models are available in the GitHub repository:
https://github.com/Anfeus02/Localized-chemical-E_ads-ML.
This journal is © The Royal Society of Chemistry 2024

https://github.com/Anfeus02/Localized-chemical-E_ads-ML
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3TA06316J


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 5

/2
9/

20
24

 1
0:

55
:3

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Author contributions

CRediT (Contributor Roles Taxonomy) was used for standard-
ized contribution descriptions: A. F. Usuga: data curation,
formal analysis, investigation, methodology, soware, valida-
tion, visualization, writing (original dra), writing (review &
editing). C. S. Praveen: data curation, conceptualization,
supervision, writing (review & editing). A. Comas-Vives: data
curation, conceptualization, project administration, resources,
funding acquisition, methodology, supervision, validation,
writing (review & editing).

Conflicts of interest

The authors declare that the research was conducted without
commercial or nancial relationships that could be constructed
as a potential conict of interest.

Acknowledgements

DFT calculations were performed in the HPC “Consorci de
Serveis Universitaris de Catalunya (CSUC)”. The authors thank
the Spanish “Ministerio de Ciencia e Innovación” for funding
the “I + D Generación del Conocimiento” project (PID2021-
128416NB-I00 and PGC2018-100818-A-I00) and the predoctoral
grant (PRE2019-089605). A part of the work has been performed
under Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with
the support of the EC Research Innovation Action under the
H2020 Programme awarded to CSP; in particular, CSP gratefully
acknowledges the support of Dr Xavier Solans-Monfort of
Computational BioNanoCat in the Department of Chemistry at
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