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Steering droplets on substrates with plane-wave
wettability patterns and deformations†

Josua Grawitter * and Holger Stark

Motivated by strategies for targeted microfluidic transport of droplets, we investigate how sessile

droplets can be steered toward a preferred direction using travelling waves in substrate wettability or

deformations of the substrate. To perform our numerical study, we implement the boundary-element

method to solve the governing Stokes equations for the fluid flow field inside the moving droplet. In

both cases we find two distinct modes of droplet motion. For small wave speed the droplet surfs with a

constant velocity on the wave, while beyond a critical wave speed a periodic wobbling motion occurs,

the period of which diverges at the transition. These observation can be rationalized by the nonuniform

oscillator model and the transition described by a SNIPER bifurcation. For the travelling waves in

wettability the mean droplet velocity in the wobbling state decays with the inverse wave speed. In

contrast, for travelling-wave deformations of the substrate it is proportional to the wave speed at large

speed values since the droplet always has to move up and down. To rationalize this behavior, the

nonuniform oscillator model has to be extended. Since the critical wave speed of the bifurcation

depends on the droplet radius, this dependence can be used to sort droplets by size.

1 Introduction

Liquid droplets on a solid substrate occur naturally during, e.g.,
rain and condensation1,2 or artificially in printing of ink3 or
medical testing.4 Depending on their interaction with the sub-
strate and gas phase, they either sit on a substrate, spread,
contract, or even move laterally along the substrate.5 Lateral
motion can be induced by a variety of mechanisms; through
nonuniform electric fields (electrowetting),6 gravity,7 Marangoni
advection,8,9 gradients in wettability,4,10,11 or deformations of the
substrate itself.12,13 Here, we focus on the latter two mechanisms.

In our previous work, we used the gradient in a wettability
step to move a droplet forward using a feedback loop, which
synchronizes step and droplet motion.14 However, due to sur-
face imperfections at which droplets get pinned, such a motion
can be difficult to realize in an experiment.5 Yet, pinning can be
avoided by a large wettability gradient,15 e.g., induced by
structural changes of the substrate,16 or by using homoge-
neously clean and flat surfaces.17

Deformations of the substrate itself also move a droplet.18 In
ref. 19 it has been demonstrated that capillary forces attract
droplets towards regions with large inward curvature. An exam-
ple of this are pipettes. It is possible to externally control such
substrate deformations, e.g., using gels that reversibly swell and
unswell in response to light with specific wavelengths.13,20,21

Already more than three decades ago wetting of curved rigid
substrates was investigated.22 In more recent work, elastic
substrates were studied that deform in contact with a liquid
droplet.23–25 Internal tension builds up as a substrate deforms,
which changes its surface tension what is known as Shuttle-
worth effect.26,27 Here, we just consider curved rigid substrates,
where this effect does not occur.

In this article we compare two mechanisms for inducing
droplet motion by imposing the spatio-temporal pattern of a
travelling wave onto the substrate; first in wettability and
thereafter in the height profile of the substrate. This enables
to steer the droplet into a prescribed direction; a typical task in
lab-on-a-chip applications.28 For possible experimental realiza-
tions of travelling waves in wettability and deformations, we
refer the reader to Sections 4 and 5, respectively. Because the
travelling wave is spatially periodic, the droplet is continuously
driven out of equilibrium and cannot settle into a sessile state.
Instead, the droplet can be considered as a driven nonuniform
oscillator,29 as we show, the driving force of which depends on
its position relative to the travelling wave. In Fig. 1 we display
two series of snapshots that illustrate the two possible modes of
motion, which we term wobbling (left in Fig. 1) and surfing
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(right in Fig. 1), respectively. In ref. 14 and 30 we applied the
boundary element method (BEM)31 to a wetting droplet on a
plane substrate with a spatio-temporal wettability pattern. To
describe deformation waves of the substrate, we needed to
extend our approach to substrates with a spatio-temporal
curvature pattern. However, we also needed to completely
reformulate our formalism in order to guarantee conservation
of the droplet volume.

First, in Section 2 we describe the theory of dynamic wetting
for small droplets and our numerical approach based on the
BEM. Next, in Section 3 we introduce the so-called nonuniform
oscillator, which we use as an analytic model to interpret the
observed droplet dynamics. We present and analyze the effect
of travelling waves in wettability in Section 4 and travelling-
wave deformations in Section 5. Finally, we comment on
implications of our findings for the sorting of droplets by size
in Section 6 and conclude with Section 7.

2 Boundary element method for
dynamic wetting

We consider the motion of viscous droplets at small scales in the
creeping flow regime, where viscous forces dominate, while inertia
is negligible. Accordingly, fluid flow within droplets are described
by the Stokes equations and the incompressibility condition,

Zr2v = rp and r�v = 0. (1)

Here, we use fluid velocity field v, pressure p, and shear
viscosity Z. In addition, appropriate boundary conditions have

to be chosen, most importantly, describing forces acting at the
fluid boundary. Notably, the flow fields determined by the
Stokes equations adapt instantaneously to the boundary condi-
tions because the equations do not contain any time derivatives.

In ref. 14 we formulated the boundary-element method for
dynamic wetting. When extending this approach to droplets on
deforming substrates, we encountered difficulties with the
conservation of the droplet volume. This forced us to reformu-
late the boundary-element method in a more formalized way.
As a result, for any point on the droplet surface we can write a
force balance

K �rRFþ F ¼ 0; (2)

where the friction force

K = �G
:
R, (3)

is linear in the surface velocity field
:
R and G is a linear operator

that does not depend on v, since the Stokes equations are linear
in the fluid velocity field v.32,33 The force �rRF derives from
the droplet free energy, as we explain in Section 2.2, and
provides the Laplace pressure, Young’s force at the contact
line, and constraint forces. Finally, F governs the dynamics
induced by deforming substrates.

After discretizing the droplet surface by a mesh, K, �rRF;

and F become vectors and G a friction matrix. In the following
we systematically determine all these quantities, which will give
us a systematic approach for calculating the motion of the
droplet. We start with the mesh discretization in Section 2.1,
then continue with the droplet free energy in Section 2.2 and
discuss the relevant Lagrange parameters for the volume and
rigidity constraint of droplet and deforming substrate, respec-
tively, in Section 2.3. In Section 2.4 we analyze the boundary
conditions at the droplet surface, which confirms the force
balance of eqn (2), and we formulate the vectors K and F. In
Section 2.5 we calculate the complete friction matrix by con-
sidering shear friction in the fluid using the boundary integral
equation for the Stokes equation, as well as liquid–substrate
and contact-line friction. In Section 2.6 we present the final
dynamic equations, which we use in our simulations, and in
Section 2.7 we collect the parameters used.

Before we proceed we add two comments. In our previous
implementation of volume conservation we directly con-
strained the velocities of the droplet’s mesh vertices following
ref. 34. However, when the substrate deforms, this ad hoc
constraint introduces spurious flows on the droplet’s surface.
Our current approach resolves this issue by properly introdu-
cing the volume constraint with the pressure as a Lagrange
parameter in the droplet free energy as explained in Section 2.3.
It constrains the restoring forces acting on the droplet’s mesh
vertices. This approach also allows us to directly incorporate an
additional constraint that links the droplet to the height profile
of the substrate. Thus, our reformulation of the boundary-
element method puts an increased focus on forces rather than
solely on velocities.

In parallel, we needed to modify our approach to contact-
line friction. Whereas in ref. 14 we simply prescribed the

Fig. 1 Time series (top to bottom) of snapshots for wettability waves
travelling at different speeds: (left) wobbling motion at large speeds and
(right) surfing motion of the droplet at small speeds. The greyscale shading
indicates wettability and the red lines indicate the contact line of the
droplet. The same two states are also observed for a travelling deformation
wave.
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velocity of the contact line using the Cox–Voinov law, now we
first calculate the Young force acting on the contact line and
then calculate its velocity with a Cox–Voinov type friction law
(see Section 2.5.3).

2.1 Mesh discretization

As noted above, our aim is to reduce the droplet motion to the
dynamics of its boundary consisting of the liquid–substrate and
liquid–gas interfaces as well as the three-phase contact line,
which requires special consideration. To treat the droplet
dynamics numerically, we describe the entire droplet surface
by a triangular mesh. Each triangle consists of three vertices and
three edges, which it shares with its direct neighbour triangles.
As long as the triangular mesh stays intact, the shape of the
droplet is completely specified by the positions of the vertices ri,
which define the configuration vector R = (r1, r2, r3, . . .).

In general, the part of the surface force field acting on the
droplet at the liquid–solid and liquid–gas interactions derives
from the functional derivative of a surface energy w.r.t. the
configuration field R. However, since the droplet surface is
discretized, the functional derivative becomes gradients w.r.t.
the vertex positions. To continue, we construct an expression
for the surface energy using surface integrals and discretize the
integrals for our mesh in the following part.

2.2 Droplet free energy and discretization

The free energy of an incompressible liquid droplet at constant
temperature can be written as

F0 ¼
þ
A

gðrÞd2rþ const:; (4)

where g is the surface tension and the area A encompasses all
the surfaces of the droplet. The bulk free energy is kept
constant here. The surface integral can be split up into two
parts: the liquid–gas (lg) interface and the solid–liquid interface
(sl) with the respective surface tensions glg and gsl. The solid–
gas interface of the substrate not in contact with the droplet
contributes to the free energy with surface tension gsg. When-
ever part of this interface is covered by the droplet, the surface
energy changes by gsl � gsg. Thus we obtain

F0 ¼
ð
Alg

glgd
2rþ

ð
Asl

gsl � gsg
� �

d2rþ const:; (5)

where Alg and Alg are the areas of the respective interfaces.
Young’s law for the equilibrium contact angle yeq is a force balance
in the substrate plane that states that gsl� gsg =�glg cosyeq.‡ Using
it together with glg = const., we obtain

F0 ¼ glgAlg � glg

ð
Asl

cos yeqðrÞd2rþ const:; (6)

where yeq is determined by the local value of gsg � gsl. Because
we want to study movable droplets on substrates with nonuni-
form wettability, the remaining integral cannot be further
simplified here.

We now turn our attention toward the constraints on the
shape of the droplet. They are two-fold: first, the volume of the
droplet is conserved and, second, the normal forces on the
liquid–solid interface sum up to zero since any fluid forces are
compensated by the forces exerted by the rigid substrate that
resists any elastic deformation. Using the method of Langran-
gian multipliers, each constraint gives rise to an additional
term in the energy functional:

F ¼F0 þ p0ðV0 � VÞ þ
ð
Asl

lðxÞ z� hðxÞ½ �d2r (7)

Here, the second term on the right-hand side constrains the
droplet volume to the value V0 and the pressure p0 serves as the
Langrange multiplier. The third term firmly connects the
vertical position z of the liquid–solid interface to the height
variations h(x) of the substrate written in Monge representation
with x = (x, y). In the case of a flat substrate, h = 0, this term
reduces to ð

Asl

lðx; yÞz dx dy; (8)

which guarantees that the solid–liquid interface Asl is defined
by z = 0. Finally, note that the volume of the droplet can be
expressed by the surface integral

V ¼ 1

3

þ
r � nd2r; (9)

as one verifies immediately with Gauss’s theorem.
Now, the functional derivative of F is one part of the force

balance of eqn (3). In our simulations we always calculate it
numerically as detailed below. However, to illustrate its con-
tent, we perform the derivative and explicitely write it as

�dF
dr
¼ �dF0

dr
þ p0nþ lðxÞGðxÞnjsl: (10)

The last term on the right-hand side results from the rigidity
constraint, which only affects the solid–liquid interface, and G(x)
is the Jacobian determinant of the height profile h(x) of the
curved substrate. The three contributions in eqn (10) are illu-
strated in Fig. 2, where the derivative of F0 gives the acting forces
due to surface tension and the Young force (see below). Their
normal components acting on the substrate compensate the
rigidity-constraint force and, as we demonstrate in Appendix D,
the remaining terms of the functional derivative can be written as

�dF
dr
¼ 2kglg þ p0
� �

n
��
lg
þglg cos yeq � cos y

� �
dclt
��
cl
: (11)

In thermal equilibrium it is zero, while in non-equilibrium it
drives the dynamics of the droplet. The first term contains the
balance at the liquid–gas interface between static pressure p0,
which we introduced with the volume constraint, and the force
due to surface tension. Here, k is the local mean curvature of the
liquid–gas interface, which is negative for the unit normal n
pointing out of the droplet. The second term on the right-hand
side of eqn (11) is the Young force acting locally on the contact
line. It points in direction of unit vector t, which is perpendicular
to the contact line and tangential to the substrate. In equilibrium‡ In fact, Young’s law follows from minimizing F0 under a volume constraint.
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the Young force vanishes (cos yeq = cosy) and p0 becomes the
Laplace pressure pL = �2kglg = p0.

To discretize all the surface integrals of the free energy F;

we use the triangular mesh of the droplet surface and sum up
the contributions from each triangle so thatð

A

f ðrÞd2r �
X
i

ð
Ai

f ðrÞd2r: (12)

Here, we have to distinguish between functions f, the values of
which are known for any position r and those functions, the
values of which are only known at the vertices. In the first case, an
example is cos yeq, we use Gaussian quadrature with 4 sample
values of the prescribed profile to calculate the integral on each
triangle. The sample values are taken at positions (1/3, 1/3, 1/3),
(3/5, 1/5, 1/5), (1/5, 3/5, 1/5), and (1/5, 1/5, 3/5) in barycentric
coordinates of the triangle and weighted by �27/48, 25/48, 25/48,
and 25/48, respectively.35 In the second case, an example is the
calculation of the volume V, we linearly interpolate between the
values at the vertices. If f has a constant value fi on the area of the
triangle, for example, in the case of glg, we simply use Aifi.

Note, after discretizing the free energy F in terms of all positions
of the vertices R, the functional derivative of F becomes rRF.

2.3 Method of lagrange multipliers

After having discretized all contributions to F; we obtain terms
as a function of the configuration vector R, including all the
constraint terms, which we write as ljgj (R) = 0. For convenience,
we label l0 = p0 and assign the remaining multipliers to the
rigidity constraint. Thus, eqn (7) becomes

F ¼F0 þ
XN
i¼0

ligiðRÞ þ const: (13)

We discretize the surface integral of the rigidity constraint in
eqn (7),

XN
i¼1

ligiðRÞ ¼
XN
i¼1

li zi � h xi; yið Þ½ �; (14)

where we subsume the area Ai surrounding each vertex into the
li, respectively, and we sum over all N vertices on the solid–
liquid interface. The force due to this constraint is guaranteed
to be normal to the substrate, since rigi = ni, as shown in
Appendix B, and therefore equivalent to the desired rigidity
constraint.§ This construction greatly simplifies the procedure
below because rRgi is easily accessible.

The purpose of the Lagrange multipliers li is to constrain
the force �rRF such that it does not have a component
perpendicular to the manifold defined by the constraints
gi(R) = 0, otherwise the constraints would be violated.¶ There-
fore, the condition

rRgið Þ � rRFð Þ ¼ 0 (15)

must hold. Using eqn (13) for F in this condition with

rRF ¼ rRF0 þ
X
i

lirRgi; (16)

we obtain a set of linear equations for the Lagrange multipliers
li (including l0),

�
X
j

rRgið Þ � rRgj
� �

lj ¼ rRgið Þ � rRF0ð Þ; (17)

which we solve numerically. With this, F is known up to a
constant.8

2.4 Boundary condition and dynamic equation

So far we looked at the forces, which derive from the droplet
free energy. They are part of the boundary condition of the
Stokes equations, eqn (1), which balances all the forces acting
at each point on the different interfaces of the droplet. There
are three contributions to this force balance. First, we have the
traction of the liquid on the interface, rn, where sij = �pdij +
Z(@ivj + @jvi) is the stress tensor, n the unit normal vector, and dij

is the Kronecker symbol. For the following argumentation, we
split the stress tensor into a part �p0n, where p0 is the spatially
uniform static pressure due to the volume constraint already
introduced in Section 2.2, and a spatially varying part ~rn = rn +
p0n. Second, there is the traction of the substrate at the
substrate–liquid interface. It consists of the constraint force
frigid = lGn|sl, already introduced in Section 2.2, with which the
substrate resists deformations induced by the droplet, and
fdeform, which acts on the liquid when the substrate deforms
in time according to the prescribed height profile h. Finally and
third, there is the traction due to the surface tension of both
interfaces, which includes the Young force acting on the
contact line and which we denoted �dF0=dr in Section 2.2.

Fig. 2 Schematic illustrating the three force contributions to �dF=dr in
eqn (10) acting on the different interfaces of the droplet (black outline):
static pressure p0 (red), surface tension and Young force �dF0=dr (blue),
and rigidity-constraint force lGn at the solid–liquid interface (green). The
rigid substrate is shaded in gray.

§ In the case of a flat substrate placed at a height h = 0, we have ni = ez and so the
constraint reduces to ligi = lizi, which is aquivalent to eqn (8).
¶ This is commonly referred to as the principle of virtual work.
8 Note that we can reuse the gradients rRgi from above in calculating rRF in
eqn (16). Note also that in our previous study ref. 14 when we studied a droplet on
a rigid flat substrate there was no need to calculate the constraint forces due to
the rigid substrate because in that case we calculated the force on each vertex
individually and imposed the volume constraint only on the resulting velocity
field. That approach proved inapplicable for our current study.
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Note that we neglect the vapour pressure of the gas phase
surrounding the droplet, here and in the following.

In total, we have the force balance at each point of the
droplet surface,

~rn� p0n ¼ �
dF0

dr
þ f rigid þ f deform; (18)

where frigid + fdeform is zero at the gas–liquid interface. Note that
fdeform is due to the boundary conditions at the liquid–substrate
interface, which include continuity of the normal velocity
component and a slip boundary condition of the tangential
component, as we will specify in Section 2.5.2. At the liquid–gas
interface eqn (18) gives zero tangential stresses or traction
forces, while the normal forces obey the usual Neumann
boundary condition, n�~rn � p0 = 2kglg, where we have used
eqn (11). Finally, using eqn (10) the first two terms on the r.h.s.
of eqn (18) together with p0n can be rewritten as �dF=dr and
we obtain

~rn ¼ �dF
dr
þ f deform: (19)

The equilibrium case with zero dynamic stresses, ~rn = 0, and
fdeform = 0 gives dF=dr ¼ 0 and was already discussed in
Section 2.2.

We now rephrase boundary condition (19) for the discretized
droplet surface. At each vertex i the traction ~rini from the fluid
is multiplied by area Ai and collected in the friction vector

K = (�~rn1A1, �~rn2A2, �~rn3A3, . . .), (20)

Similarly, we collect the substrate traction fdeform in a
force vector

F = (f (1)
deformA1, f (2)

deformA2, f (3)
deformA3, . . .). (21)

Our method to calculate F is described in detail in Section 2.5.
As usual, the gradient of F describes a force �rRF; which
takes the place of the functional derivative �dF=dr. Thus,
condition (19) is rewritten as K þ F �rRF ¼ 0; which proves
the force balance of eqn (2), with which we started. In the next
section we will show that K = �G

:
R and thereby calculate the

friction matrix. This completes the reformulation of our bound-
ary element approach.

2.5 Friction matrix

Now, we specify the friction matrix G such that all sources of
friction related to the droplet are accounted for. Three types of
friction are relevant in our setup. First, there is shear friction or
viscous shear stresses in the droplet fluid, when neighboring
fluid layers move relative to each other. Second, there is slip
friction between the substrate and the directly adjacent fluid
layer. And finally, there is friction of the moving contact line.
The latter should naturally arise from the first and second
mechanisms. However, so far this has proved difficult to show
analytically5 and also to implement numerically due to the flow
singularity that arises at the contact line.36 Therefore, we use a
hydrodynamically motivated friction law for the contact line. It

is closely related to the Cox–Voinov law,37 which has success-
fully been matched to experiments, e.g., in ref. 38.

2.5.1 Shear friction. We start with shear friction in the
droplet fluid. The solution of the Stokes equations within a
given domain is equivalent to a boundary-integral equation that
relates flow velocity v(r) to surface forces r(r)n and force/source
dipoles at the domain surface,31

a
4p

v r0ð Þ ¼
þ
O r0 � rð ÞrðrÞnd2r�

þ
vðrÞ � T r0 � rð Þnd2r; (22)

where a is the inward solid angle, O the Oseen tensor, and T the
associated stress tensor. For the surface velocities relevant here,
a = 2p at the fluid interface and a = 2y at the contact line, while
inside the droplet a = 4p. We note that rn in eqn (22) can be
replaced by ~rn since a constant pressure does not contribute to
the integral as shown in Appendix A. To discretize the
boundary-integral equation, we proceed as in our previous
work.14 We assign to each surface vertex parts of the surround-
ing triangles such that the resulting polygonal cells with area Aj

do not overlap and cover the whole region of integration. The
result is a set of linear equations for the vertex velocities vj,X

j

cidijvj ¼
X
j

Xij ~rnj �
X
j

Yijvj : (23)

Recalling the definition of K in eqn (20) and introducing block
matrices, which we specify in Appendix C,

X ¼
X11=A1 X12=A2 . . .
X21=A1 X22=A2 . . .

. . . . . . . . .

0
@

1
A; (24)

Y ¼
Y11 Y12 . . .
Y21 Y22 . . .
. . . . . . . . .

0
@

1
A and C ¼

c1 0 . . .
0 c2 . . .

. . . . . . . . .

0
@

1
A; (25)

we are able to rewrite eqn (23) as

C
:
R = �XK � Y

:
R. (26)

or as

Ksf = �X�1(C + Y)
:
R, (27)

where X�1(C + Y) is the shear contribution to the friction
matrix.

2.5.2 Liquid–substrate friction. We now turn to friction
between liquid and substrate due to a non-zero slip velocity.
The conventional slip boundary condition, also called Navier
condition, is lsPtrn = ZPtv, where ls is the slip length and Pt =
1 � n#n the projection operator on the tangential plane. Note
that the surface normal n points out of the fluid according to
ref. 39 and that Ptsn = Pt~rn. However, since we are interested in
moving substrates, the fluid motion relative to the local
substrate velocity vsubs and the deforming traction fdeform

become relevant and we have lsPt(~rn � fdeform) = ZPt(v �
vsubs). On the discretized solid/fluid interface of the substrate
using eqn (20) and (21), the boundary condition becomes

P8(Kls + F) = �QP8(
:
R � Vsubs). (28)
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Here, Pjj:R
3n ! R2m is the projection operator from all the n

droplet vertices onto the tangential space of the substrate with
m vertices. For consistency, we defined Vsubs = (v(1)

subs, v(2)
subs,. . .)

as the vector of the substrate velocities at the vertices, which
also includes the vertices on the liquid–gas interface with
v(i)

subs = 0. Finally,

Qij ¼
Z
ls
Aidij (29)

is the slip contribution to the friction matrix, where dij is the
Kronecker symbol and i, j refer to vertices on the substrate.
Here we consider that, according to eqn (3), K must vanish if
:
R = 0, and similarly, the parallel components of vector F in
eqn (2) must vanish if there is no substrate deformation, i.e., if
Vsubs = 0. We therefore conclude that P8F = QP8Vsubs which
satisfies both conditions.

So far, we have not addressed the continuity condition for
the normal velocity component, v�n = vsubs�n, at the liquid–
substrate interface, which we already mentioned in Section 2.4.
Similar to P8, it is convenient to introduce the projection operator
onto the normal space of the substrate vertices P?:R3n ! Rm.
The boundary condition can then be restated for our discretized
mesh as P>

:
R = P>Vsubs. It directly determines the normal

components of the vertex velocities at the substrate, which are
contained in

:
R. However, the condition also means that the

substrate pushes or pulls on the liquid as it deforms its height
profile h and the liquid resists with friction. We have already
introduced the traction forces due to the substrate deformations.
Their normal components are contained in the vector F> = PT

>

P>F, which has to be calculated numerically at the same time as
those components of

:
R which are still unknown.

For completeness we give the normal velocity component of
the substrate velocity for a deforming substrate with height
profile z = h(x, t). It amounts to vsubs(x)�n = qth(x,t)ez�n.

2.5.3 Contact-line friction. Finally, we address the friction
of the contact line. In 1964 Moffatt solved the Stokes flow at the
contact line of a moving wedge filled with a viscous liquid and
found an analytic expression for the traction rn along the
liquid–gas interface,40

n � rn ¼ 2Zvcl
H

sin2 y
y� sin y cos y

: (30)

Here, H is the distance of the interface from the substrate, y the
contact angle, and vcl the tip velocity of the wedge along the
substrate. Voinov relied on eqn (30) to derive the well-known
Cov–Voinov law,37 which we have previously used to prescribe
contact line velocity in ref. 14. However, since in our reformu-
lated approach the Young forces appear explicitely through the
droplet free energy, we derive a direct relationship between
Young forces and contact line velocity based on eqn (30). As in
the Cox–Voinov law we do not take into acount contact angle
hysteresis and pinning, which are not our focus here.

Again, if the substrate moves, we have vcl = v � vsubs and its
deforming traction fdeform, which modify eqn (30). The velocity
lies in the tangential plane of the substrate and is normal to the
contact line. To proceed, we integrate the traction over height H

along the liquid/gas interface from a microscopic length ls, i.e.,
the slip length, up to a mesoscopic length zðz

ls

n � rn dH ¼ 2Z ln
z
ls

� �
sin2 y

y� sin y cos y
vcl: (31)

In the discretized representation of the droplet surface, we
choose for the integral the surface force rini assigned to the
vertex i on the contact line, which is contained in the friction
vector K, i.e., ðz

ls

n � rn dH ¼ zni � rni: (32)

For the contact line, we therefore have the additional
contribution

Pcl(Kcl + F) = �MPcl(
:
R � Vsubs), (33)

where Pcl:R
3n ! Rk is the projection operator on the direction

normal to the contact line and tangential to the substrate,
where k is the number of vertices on the contact line. Obviously,
these vertices contribute with

Mij ¼ 2Z
Ai

z
ln

z
ls

� �
sin2 yi

yi � sin yi cos yi
dij (34)

to the friction matrix. Here we use the Kronecker symbol dij,
which means that M is diagonal. As in Section 2.5.2, we identify
PclF = MPclVsubs as contribution to F in eqn (2). Note that the
instantaneous local contact angle yi is determined by the shape
of the droplet mesh, i.e., the value of R and so Mij is not a
function of the contact line velocity vcl. However, yi also appears
in the driving Young force [see second line of eqn (11)] and
thereby determines vcl.

We summarize here our result for the substrate traction
force F. While the components tangential to the substrate are
determined by the tangential velocity of the substrate, the
normal component needs to be determined. Thus we have

F = (PT
8QP8 + PT

clMPcl)Vsubs + F> (35)

where T indicates matrix transposition.

2.6 Final dynamic equations

Finally, we are able to formulate the full set of dynamic
equations. Collecting all the contributions to the friction force
K linear in

:
R from eqn (27), (28) and (33), the total friction

matrix G becomes

G = X�1(C + Y) +PT
8QP8 + PT

clMPcl. (36)

Thus the force balance of eqn (2) is completely determined
and reads

�G _R ¼ K

¼ �rRF� PT
k QPk þ PT

clMPcl

� �
V subs � F?;

(37)

where he have used the specific expression for F from eqn (35).
To solve this equation for the velocities

:
R for a static substrate

(Vsubs = 0 and F = 0), one just needs to invert the friction matrix G.
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To test our reformulated implementation of the boundary-element
method, in Appendix E we simulated the relaxation of a droplet
towards its equilibrium shape. The relaxation of the dynamic
contact angle is in very good agreement with experimental
measurements.

For substrates deforming in time, the right-hand side of
eqn (37) contains the unknown non-zero components of F>,
while on the left-hand side in

:
R the normal velocity compo-

nents at the solid–liquid interface are given by the normal
substrate velocity components, i.e., P>

:
R = P>Vsubs. By introdu-

cing the projector Pu:R3n ! R3n�m that projects
:
R onto the

subspace of its unknown entries, we can reorder eqn (37) so
that on the right-hand side only known quantities appear

1 �P?GPT
u

0 �PuGP
T
u

0
@

1
A P?F?

Pu
_R

 !
¼rRF� PT

jjQPjjþPT
clMPcl�G

h i
V subs;

(38)

where we used P>
:
R = P>Vsubs as well as PuVsubs = PuF> = 0.

Eqn (36) further simplifies the right-hand side so that

1 �P?GPT
u

0 �PuGP
T
u

0
@

1
A P?F?

Pu
_R

 !
¼ rRFþ X�1ðC þ YÞV subs:

(39)

Now, one first solves for Pu
:
R by inverting �PuGPT

u and then uses
Pu
:
R in the first row to determine P>F> if needed. This is a

procedure, which we implemented in our computer code.

2.7 Nondimensionalization and parameters

We choose characteristic units, which derive from the motion
of the droplet surfaces. First, as a unit of length l, we choose the
initial radius R0 of the liquid–solid interface of the droplet. The
dominant time scale for the deformation of the droplet is
determined by the motion of the contact line. A good estimate
for the speed of the contact line was derived by Voinov in ref. 37
using eqn (30) and (18). He ultimately arrives the Cox–Voinov law

vcl ¼
glg

9Z ln z=lsð Þ y
3 � yeq3

� �
: (40)

From the prefactor of the Cox–Voinov law and R0, we obtain an
inherent time scale

t = 9glg
�1ZR0 ln(z/ls). (41)

for the motion of the contact line. Furthermore, a characteristic
force follows from combining the liquid–gas surface tension glg

and R0 as fc = glgR0. Now, writing eqn (1) in nondimensional
form using these characteristic units, gives rise to a dimension-
less viscosity ~Z = [9 ln(z/ls)]

�1. Thus, our results become inde-
pendent from specific values of glg and R0. They only depend on
the ratios ~Z, z/R0 and ls/R0, for which we choose appropriate
values.

As in ref. 14 the parameters of our system are matched to
droplets from a 90%-glycerol/10%-water mixture for which de
Ruijter et al.38 measured in experiments ln(z/ls) = 44, Z =
209 mPa s, ls = 1 nm, glg = 65.3 mN m�1, and mass density

r = 1.24 g ml�1. To determine a value for z needed in the
friction matrix of eqn (34), we fitted the experimental data for
the droplet relaxation in ref. 38 in our simulations and
obtained z = 0.17R0. All simulations are performed using a
surface mesh of 1199 vertices which, in their initial configu-
ration, have an average distance of 0.094R0 from the nearest
neighbor. In the following, we use R0 = 100 mm.

From the characteristic parameters, we determine the Rey-
nolds number as

Re ¼ rR0
2t�1

Z
¼

rR0glg
9Z2 ln z=lsð Þ ¼ 5� 10�4; (42)

which matches the assumption of negligible inertia inherent in
eqn (1).

3 Driven droplets as nonuniform
oscillators

Our droplets are driven by travelling waves either in wettability or in
deformations of the substrate. For small wave speeds they are
strongly connected to and surf on the wave, while for large speeds
they can no longer follow and perform a wobbling motion. Before
we describe the phenomenology of both substrate types, we intro-
duce and study a simplified model for the motion of a droplet under
a spatially periodic external stimulus. Neglecting inertia, we start
with a simplified force balance for the center of mass y of the
droplet, �G:y + F(y, t) = 0, where G is a friction constant and F is the
effective force exerted by the substrate, on which the droplet is
moving. The travelling wave pattern is modeled by the effective force

Fðy; tÞ ¼ �F0 sin
2p y� vwavetð Þ

l

� �
(43)

with wavelength l and wave speed vwave. It models that there are
specific positions in the travelling wave, y� vwavet = np with n = 0, 1,
. . ., where no force is excerted on the droplet. For our specific wave
patterns, these are the minima and maxima. In the co-moving
reference frame of the substrate pattern, ycom = y � vwavet, the
droplet’s velocity :ycom = :y � vwave generally oscillates around�vwave,
i.e.,

_ycom ¼ �vwave � vc sin
2pycom

l

� �
(44)

with amplitude vc = F0/G. Depending on its position on the pattern,
the droplet’s speed is increased or reduced. In particular, for ycom =
nl/2 the force on the droplet is zero, which means :y = 0 or :ycom =
�vwave. Although :

ycom oscillates around �vwave, that is not its time
average. Instead �vwave is the spatial average of :ycom.

We can map eqn (44) onto the so-called ideal nonuniform
oscillator29 for phase variable j with constants a and c by
identifying

j ¼ �2pycom
l

; a ¼ 2pvwave
l

; and c ¼ 2pvc
l
: (45)

This results into the expression

_j = a � c sinj (46)
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also called the Adler equation.41 Unlike the uniform (harmonic)
oscillator, the phase of which has a constant rate of change, j
determines its own rate of change. In particular, the oscillation
stops for |c| Z |a| when the two terms on the r.h.s. balance
each other.42

Strogatz derives the period T of the nonuniform oscillator in
ref. 29 and following his derivation we find with our parameters

T ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vwave2 � vc2

p : (47)

To predict the long-time behavior of the droplet, for example,
its position, the time averaged droplet speed %v is useful, which
we derive now. Generally, in steady state the droplet position
oscillates relative to the substrate pattern with a period

T ¼ l
vwave � �v

; (48)

where the difference between vwave and %v gives the droplet’s
speed relative to the substrate pattern with wavelength l.
Differently speaking, T is the period of the forcing experienced
by the droplet through the travelling wave. Setting eqn (47)
equal to eqn (48), we obtain

�v ¼ vwave �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vwave2 � vc2

p
; (49)

which relates %v to vwave with only a single free parameter, vc.
Consequently, in this model vc contains all material properties
of the driving mechanism and droplet-substrate interaction.
The limiting case for large vwave is %v E vc

2/(2vwave) and therefore

vc ¼ lim
vwave!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vwave�v

p
; (50)

which is useful to find vc in the simulations but also in
experiments.

However, vc is not just a fitting parameter because it also
marks a change in the dynamics of the droplet. For vwave r vc

the oscillation stops, as predicted by the non-uniform oscilla-
tor, which means :ycom = 0 or, equivalently, :y = vwave = %v. In our
following analysis, we will refer to this stationary dynamics as
‘surfing’ and to the oscillatory dynamics as ‘wobbling’.

The main limitation of the nonuniform oscillator model is
that the constant vc is a priori unknown and has to be
determined, e.g., from experimental or (in our case) simulation
data. From its definition vc = F0/G we see that it is specific for
the periodic forcing, eqn (43), which is applied to the droplet.
Consider the case of deforming substrates with a travelling-
wave height profile. On a deforming substrate, the amplitude of
the driving force F0 comes from the substrate curvature. How-
ever, the curvature is determined by the amplitude of the
travelling wave and its wavelength l. Therefore, vc is not a
independently tunable parameter but also a function of l.
Similarly, in the case of travelling waves in wettability, l
determines the local gradient in wettability and thereby F0.
Because vc generally depends on l this means that the relations
expressed in eqn (47), (49) and (50) are only useful for predic-
tions as long as l (and therefore vc) is kept constant.

4 Travelling waves in wettability

We first study how travelling waves in wettability can move
droplets on a completely flat substrate, similar to our earlier
study of moving steps in wettability in ref. 14. However, there
are clear differences, which we explain in the following.

4.1 Substrate dynamic

Here, we impose a travelling wave in wettability on a flat
substrate such that the prescribed equilibrium contact angle
varies according to

yeqðy; tÞ ¼ y0 þYðtÞDy sin2 2p
y� vwavet

2l

� �
(51)

with wavelength l = 2R0, vwave the speed of the wave in y-
direction, the Heaviside or Y-function, the amplitude Dy = 301,
and y0 = 901.**

In experiment such a travelling wave can be generated, for
example, by first exposing an azobenzene-coated substrate
(cmp. ref. 11) to structured blue light with a plane-wave intensity
profile, then UV light of uniform intensity, then again struc-
tured blue light with a slightly shifted intensity profile, and so
on. By alternating between these UV and blue light patterns, one
produces a wettability profile which slowly changes in time.

The droplet moves toward regions of high wettability, which
means the valleys of the travelling wave in yeq. Because these
valleys are steadily moving forward in y-direction, the droplet is
biased to also move in that direction. However, as noted in
Section 3, the droplet can perform different kinds of motion
under the influence of this driving mechanism, namely surfing
and wobbling motion (see Fig. 1), which we will analyse in
detail now.

4.2 Surfing and wobbling

We first review the basic phenomenology. A surfing droplet
moves at the same speed as the travelling wave. Consequently,
its shape remains constant and a stationary flow field exists
inside the droplet (see Movie M1 in the ESI†). This stationary
state is identical to the surfing dynamics we observed in ref. 14.

A wobbling droplet moves at a slower speed than the
travelling wave pattern. It oscillates in speed and shape as it
repeatedly passes over the peaks and valleys of the wave (see
Movie M2 in the ESI†). The wobbling dynamics was not present
in our previous study of moving steps in wettability14 because it
requires a periodic wettability pattern.

According to the nonuniform oscillator model, we outlined in
Section 3, wobbling occurs above a critical speed of the travelling
wave pattern. As the speed of the travelling wave pattern
decreases, the period at which the droplet shape oscillates grows
and it diverges exactly at the transition. So, the resulting surfing
state can be considered as a wobbling which is frozen in time.
This bifurcation is analyzed in detail in Section 4.4.

** Note that in ref. 14 we studied a moving wettability step and explored the
influence of different contact angles y0 and step widths Dy on the surfing speed of
a droplet. One important finding was that y0 = 901 does not result in a
qualitatively different result than other values of y0.
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4.3 Quantitative analysis

One characteristic quantity of the surfing and wobbling
dynamics is the droplet speed and we ask how it relates to
the speed of the wave pattern. The droplet speed needs to be
defined carefully, especially for wobbling, because it varies
periodically over time. It is appropriate to average the droplet
speed over one period of oscillation T. The period of oscillation
refers to the shortest duration between two identical shapes of
the droplet, albeit not identical positions in the lab reference
frame. The average droplet speed is then formally given by

�v ¼ yðtþ nTÞ � yðtÞ
nT

(52)

where the starting time t is set after the decay of any transients and
the number of periods n is chosen according to the available
simulation data. Note that, for the case of a surfing droplet, we
have y(t) = vwavet + y0 with position y0 at t = 0. Here, the time interval
T is arbitrary and the definition above reduces to %v = vwave.

In Fig. 3(a) we plot the speed ratio %v/vwave versus vwave as
determined from our BEM simulations. The speed ratio is 1 in
the surfing state and it decays as vwave

�2 in the wobbling state
(dashed line), as predicted from the nonuniform oscillator model
and eqn (49) in the limit vwave c vc. This means %v is inversely
proportional to vwave for wobbling and equal to vwave for surfing.
The time-averaged speed of the droplet decays to zero which also
matches our observation from an earlier article that droplets are
less susceptible to rapid changes in wettability.30 For a full
quantitative comparison with our model, we need to determine

the velocity vc. Following eqn (50), we plot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vwave�v
p

versus vwave in
Fig. 3(b) and read off vc = 2.65R0t

�1 at large wave speeds (dash-
dotted red line). The dashed line in Fig. 3(a) is the prediction
from eqn (49) using the determined value for vc.

The transition from surfing to wobbling appears continuous,
meaning there is no jump in droplet speed, as predicted by the
nonuniform oscillator model. However, the transient dynamics
decays slowly close to the transition so that we lack data close to
vwave = vc. If the transition is indeed continuous, the droplet
moves fastest exactly at the critical wave speed vc. The period T
of wobbling oscillations, displayed in Fig. 3(c), grows inversely
proportional to vwave � vc as vwave approaches vc from above.
These observations for the wobbling state again quantitatively
match the prediction of the nonuniform oscillator model.

4.4 Comparison with travelling steps in wettability

In ref. 14 we observed a droplet surfing along a substrate on a
wettability step that moves with velocity vstep and a sigmoidal
profile s(y). Similar to eqn (44) we can describe the droplet
velocity in the co-moving frame of the step with

_ycom ¼ �vstep þ vcs0
ycom

d

� �
; (53)

where for the sigmoidal function we chose s(y) = (1 + e�y)�1,
and d is the step width. Most importantly, for vstep o vc two
surfing states exist. They sit outside the center of the step and
are stable and unstable fixed points, which eventually meet in a
saddle-node bifurcation at vstep = vc. Furthermore, there is a

sessile steady state where the droplet sits outside of the step. It
occurs for any value of vstep in the limit |ycom/d| c 0 so that the
contribution from s0 vanishes. The saddle node bifurcation
with the stable and unstable fixed points as well as the stable
fixed point of the sessile droplet are schematically illustrated in
Fig. 4(a) using an appropriate shape variable.

Comparing the moving wettability step treated in ref. 14 to
the travelling wettability wave considered here and modeled by
eqn (44), we note that a sessile state is impossible due to the
periodicity of the wave pattern. Instead, the wobbling dynamic
takes the place of the sessile state for vwave 4 vc. In Fig. 4(b) the
resulting bifurcation diagram is sketched. The saddle-node
bifurcation of the moving wettability step is still present but
for travelling waves it collides with the limit cycle associated
with wobbling. This collision comprises a global bifurcation
which is called Saddle-Node-Infinite-PERiod (SNIPER)
bifurcation.29

A SNIPER bifurcation was previously observed for droplets
exposed to an oscillating external force on a static heteroge-
neous substrate41 and for a droplet subject to a constant
external force on a rotating cylinder43,44 with the force acting
perpendicular to the cylinder’s axis of rotation. In both cases,
the bifurcation marks the transition from a pinned to a sliding
droplet.

Fig. 3 Diagrams of (a) the mean droplet speed %v, (b) the helper quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vwave�v
p

; and (c) the wobbling oscillation period T plotted versus vwave for a
travelling wave in wettability with wavelength l = 2R0. Blue dots indicate
our results from BEM simulation, the dashed black lines indicate predic-
tions from the nonuniform oscillator model and the dash-dotted red line
indicates the critical wave speed vc, which is the sole fitting parameter of
the model.
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5 Travelling-wave deformations

We now turn to the second driving mechanism introduced in
Section 2. The substrate deforms such that its height profile
follows a travelling wave. The wettability is kept uniform and we
solely rely on the travelling height profile to move the droplet.
In experiment such a travelling wave can be generated, for
example, by light-responsive liquid-crystal elastomers exposed
to structured light patterns.20 The influence of gravity in such a

deformation wave is negligible because the capillary length lc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
glgr�1g�1

q
� 23R0 is much larger than the droplet radius. This

raises the question of the driving mechanism that moves the
droplet forward.

For an equilibrium contact angle of yeq = 901, which accord-
ing to Young’s law occurs at surface tensions gsl = gsg, only the
liquid–gas interface is relevant and the droplet deforms to
minimize the area of this interface. Hence, on a curved surface
the droplet moves away from peaks and toward valleys because
there the liquid–gas interface occupies less area compared to a
droplet with the same volume sitting on a flat part or a peak of
the substrate. For yeq o 901 the droplet is even more attracted
to valleys in the substrate, as it is energetically advantageous to
cover more of the solid with liquid, while for yeq 4 901 the
situation is less clear. In ref. 19 Lv et al. demonstrate how a
droplet moves on the inside and outside of a conical substrate
without any additional external stimulus. On the outside of the
cone the liquid–substrate curvature is negative and on the
inside of the cone it is positive. Notably, for all cases studied
with yeq ranging from 301 to 1201, the droplets move in the
direction of increasing curvature. The same behavior was
recently confirmed for droplets on cylinders of varying size.45

Indeed, when we place a droplet onto a substrate peak with
yeq = 1201 in our BEM simulations and then perturb the droplet,

the position is unstable. Lv et al. term this mechanism curvi-
propulsion and in this section we investigate if it generates the
same wobbling and surfing dynamics we found for the wett-
ability waves in Section 4 and if there are any differences
between the two cases.

5.1 Surfing and wobbling

Instead of a wettability profile, we now impose a travelling
height profile of the substrate with amplitude h0,

hðy; tÞ ¼ h0qðtÞ sin2
y� x� ywaveðtÞ

2l
; (54)

where x determines the initial phase shift or position of the
wave relative to the droplet at y = 0. Especially, in the surfing
dynamic we use a value of x = 0.3R0 to place the droplet close to
its surfing position on the wave profile, while x is irrelevant for
the wobbling dynamics. We introduce the factor

qðtÞ ¼

0 for t � 0

t=t0 for 0o t � t0

1 for t4 t0

8>>><
>>>:

(55)

and

ywaveðtÞ ¼
0 for t � t0

vwave � t� t0ð Þ for t4 t0:

(
(56)

The purpose of the factor q(t) is to allow a continuous evolution
of the surface deformation from a flat to the sinusoidal shape
to which the droplet can adjust gradually starting at a specific
position relative to the wave. Then, the deformation wave starts
to travel at t = t0, where we choose t0 in the interval 0.1t r t0 r
0.2t. To be specific, we set l = 4R0 for the wavelength, h0 = 0.1R0

for the amplitude, and an equilibrium contact angle of yeq =
901.†† In Section 6, we will explore travelling deformation waves
for a range of wavelengths.

With time the droplet again settles into either surfing or
wobbling motion depending on the wave speed vwave. Because it
is attracted to the valleys in the substrate, it tries to follow them
as the travelling deformation wave progresses. If the travelling
wave moves sufficiently slowly, the droplet can surf on a
position behind the valley (see Movie M3 in the ESI†). If the
travelling wave moves faster than a critical speed, the droplet is
always overtaken by the peak behind it, relaxes into the closest
valley, and falls back again giving rise to the wobbling motion
(see Movie M4 in the ESI†).

5.2 Quantitative analysis

In analogy to the travelling wettability pattern, we analyze the
time-averaged speed of the droplet as defined in eqn (52). In
Fig. 5(a) we again plot %v/vwave versus vwave. In contrast to the
wettability wave, the speed of the wobbling droplet now grows

Fig. 4 Schematic bifurcation diagrams for an appropriate droplet-shape
variable plotted versus pattern velocity. (a) The droplet dynamics in the
step wettability pattern (cf. ref. 14) corresponds to a saddle-node bifurca-
tion at the critical velocity vc. (b) The travelling wave pattern generates an
additional limit cycle that collides with the saddle and node, giving rise to a
saddle-node-infinite-period (SNIPER) bifurcation.

†† Note that yeq = 901 is not a special case here because curvi-propulsion acts in
the same direction regardless of wettability, i.e., regardless whether a substrate is
hydrophobic or hydrophilic.19
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linearly with vwave at large vwave. Due to this clear difference, we
realize that our model needs to be adjusted.

To start, we re-examine the nonuniform oscillator model of
eqn (44), where a spatially periodic force drives the droplet with a
constant amplitude vc. For the deforming substrate we introduced
a traction force F> in eqn (37), which imposes the deformation of
the substrate onto the droplet shape. However, this force depends
on vwave: it is zero for vwave r vc, where the droplet’s shape is
constant and beyond vc it grows with vwave as the droplet is
deformed more rapidly. As before, the force is also spatially
periodic since it originates from the wave pattern of the substrate’s
height profile. Therefore, to include the dependence of the ampli-
tude of the driving force on vwave, we extend eqn (44) and write

_ycom ¼ �vwave � vc 1þ e
vwave

2 � vc
2

vc2


 �
sin

2pycom
l

� �
: (57)

The dimensionless coefficient e { 1 quantifies the relative
strength of the wave-speed depending part of the amplitude. In
analogy to eqn (47), we find for the time period,

T ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2e� e2 vwave2 � vc2ð Þ=vc2

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vwave2 � vc2

p ; (58)

which together with eqn (48) gives the mean droplet speed,

�v ¼ vwave � ð1� eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vwave2 � vc2

p
: (59)

Here, we have used
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2e� e2 . . .
p

� 1� e in eqn (58). The small
parameter e means that %v increases proportional to vwave for large
vwave. Note that e does not affect the scaling of the wobbling period
T with the inverse wave speed well above vc.

Now, our procedure to determine e and vc, the central
parameters of the model, is as follows. First, from eqn (59)
we determine the limiting value of %v/vwave = e for large vwave,
which we can directly read off from Fig. 5(a) as e = 3.565 � 10�3.
Then, we subtract evwave from both sides of eqn (59),

�v� evwave ¼ ð1� eÞ vwave �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vwave2 � vc2

ph i
; (60)

and expand the r.h.s. for large vwave to obtain

�v� evwave ¼ lim
vwave�vc

ð1� eÞ vc
2

2vwave
: (61)

Solving for vc yields

vc ¼ lim
vwave�vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vwave

�v� evwave
1� e

r
¼ lim

vwave�vc
v	; (62)

which for e = 0 indeed simplifies to eqn (50). Accordingly, in Fig. 5(b)
we plot v* as defined in eqn (62). Because e appears as coefficient of
vwave

2, v* is sensitive to small errors in e at large vwave. However,
around vwave/R0t

�1 = 2 it takes on a constant value, from which we
determine vc = 0.185R0t

�1. The dashed black line labelled model in
Fig. 5(a) shows that with these parameters our revised model
quantitatively matches the BEM data (blue dots). Similarly, it also
reproduces the wobbling period displayed in Fig. 5(c). Because
around vwave = vc, the original and the revised model behave the
same, the latter also predicts a SNIPER bifurcation at vwave = vc for
droplets driven by travelling substrate deformations.

Our revised model fits the BEM data well and thus provides
an interpretation of the asymptotic behavior of %v for large vwave.
To capture the asymptote, we introduced an amplitude of the
driving force, which depends on vwave. It accounts for the fact
that a travelling substrate deformation always needs to displace
the droplet, which requires a larger driving force with increas-
ing vwave. This is the clear difference to travelling wettability
patterns treated in Section 4, where the pattern can just pass
beneath the droplet without the need to lift it up.

6 A note on particle sorting

In Sections 4 and 5 we described that droplets move in
response to spatial gradients in wettability or curvature of the
substrate, respectively. Both, gradient and curvature, change in
magnitude when we adjust the wavelength l of the travelling
wave pattern. Therefore, we can expect that the speed of the
droplet %v also depends on l. However, in the surfing state the
droplet speed is identical to the wave speed vwave, regardless of l.
Therefore, we only need to consider a wobbling droplet.

In Fig. 6 we display for both driving mechanisms the mean
droplet velocity %v as a function of R0/l for vwave = 50R0t

�1, which
places the droplet far into the regime of wobbling dynamics.

Fig. 5 Diagrams of (a) the mean droplet speed %v, (b) the helper quantity
v*, and (c) the wobbling oscillation period T as functions of vwave for a
travelling deformation wave with wavelength l = 4R0. Blue dots indicate
our results from BEM simulation, the dashed black line indicates the
revised nonuniform oscillator model, eqn (59), the dash-dotted red line
indicates the critical wave speed vc, and the dotted red line indicates the
parameter e. The latter two are the fitting parameters of the model.
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For travelling deformation waves (green crosses in Fig. 6) no
clear trend is discernible because mean droplet speed %v has a
minimum near R0 = 0.17l. In contrast, for travelling waves in
wettability (blue dots in Fig. 6) we observe that %v grows like (R0/
l)2. Further decreasing l, one would expect %v to decrease again.
However, for larger ratios R0/l the creeping flow approximation
does not hold anymore for deforming substrates and one enters
the regime of unsteady Stokes flow due to the increased
oscillation frequency of the height profile.

Now consider a poly-disperse collection of droplets with R0 in the
range of 0.1l to 0.5l on a single substrate with a travelling wave in
wettability with fixed l. According to Fig. 6 there is a unique value of
%v for each droplet size. This means, after we let the droplets run for
some time (and with sufficient distance between them to prevent
mergers), the droplets will separate according to their size. Because
small droplets lag behind larger droplets, this naturally leads to a
sorting mechanism for such a poly-disperse collection of droplets.

7 Conclusions

We have studied liquid-droplet motion on substrates using two
different mechanisms: travelling waves in wettability and
travelling-wave deformations of the substrate. To that end, we
first implemented the boundary element method (BEM) for the
fluid velocity field inside the droplet starting from the free
energy of the droplet, the balance of forces at the droplet
interface, and the relevant friction contributions.

To interpret our numerical findings from applying the BEM,
we first introduced an analytic model for a particle driven by a
travelling-wave force, which maps onto the so-called nonuni-
form oscillator. For increasing wave velocity, the analytic model
exhibits a bifurcation between two states, which we call surfing
and wobbling and which directly connect to the phenomenol-
ogy observed in our BEM simulations.

For travelling waves in wettability the results from BEM
simulations for wobbling period and mean droplet speed are
consistent with the analytic model and indeed confirm the
bifurcation in the full dynamical system. This further implies
that the motion of the droplet’s center of mass can be character-
ized solely by the critical wave speed for the bifurcation, which is
determined by the material properties of the droplet and sub-
strate. For a specific set of parameters we determined the critical
wave speed by varying the wave speed in the BEM simulations.

We also investigated travelling-wave deformations of the
substrate, which give rise to what is called curvi-propulsion in
ref. 19. Again, we could identify a transition from surfing to
wobbling with increasing wave speed but, interestingly, the
simulation results reveal that the droplet speed does not
approach zero for large wave speeds. By including a speed-
dependent amplitude of the driving force, the modified analytic
model could account for this new behavior, as we demonstrated
for a specific set of parameters in the BEM simulations.

Finally, we also performed simulations where we varied the
wavelength l of the travelling wave for both driving mechanisms in
the wobbling regime. For waves in wettability the droplet speed
decays as l�2, which implies that the critical wave speed is
proportional to droplet radius over wavelength. This suggests a
potential sorting mechanism for a collection of droplets by droplet
size. For travelling-wave deformations of the substrate, we could
not observe a clear trend in droplet speed w.r.t. wavelength.

Our findings compare and contrast two different mechanisms
for steering droplets toward a preferred direction, one based on
switchable wettability and one based on externally-induced defor-
mations of the substrate. They demonstrate that the relevant
quantities such as droplet speed and wobbling period can be
reproduced and interpreted with an analytic model using only
one or two fitting parameters, respectively. Moving droplets is
relevant for lab-on-a-chip applications. Our work suggest two meth-
ods for realizing this. Another attractive possibility to explore are
substrates with switchable softness46 and the occurence of durotaxis
since our reformulated approach is already well-adapted to deform-
ing substrates. In particular, the elasticity of a soft substrate can be
represented by an additional contribution to the free energy.

Conflicts of interest
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Appendices
A Invariance of the boundary-integral equation

In eqn (22) one can replace rn by ~rn = rn + p0n, where the
constant pressure p0 does not contribute to the surface integral.
To show this, we write for an arbitrary force vector f0,

f 0 �
þ
O r0 � rð Þp0nd2r ¼ p0

þ
O r� r0ð Þf 0½ � � nd2r: (63)

The closed surface integral of the Stokeslet flow field,
uStokeslet(r) = O(r � r0)f0, vanishes, since uStokeslet(r) is incom-
pressible by construction and after applying Gauss’s theorem.

Fig. 6 Diagram of mean droplet speed %v as a function of R0/l, i.e., the
ratio between droplet radius and wavelength, for travelling waves with
speed vwave = 50R0t

�1. Blue dots indicate results from BEM simulation with
waves in wettability (right axis), and green crosses indicate results from
BEM simulation with deformation waves (left axis) with h0 = 0.1R0. Con-
necting dotted and dashed lines are added to guide the eye. The solid
black line indicates a quadratic scaling.
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B Normal vector in Monge representation

We parameterize the substrate according to Monge representa-
tion by r̃ = (x,y,h(x,y)). The normal n then points perpendicular
to both tangential vectors of the surface which are given by the
derivatives of r̃ w.r.t. x and y, respectively, so that

n ¼ @~r

@x
� @~r
@y
¼

�@xh
�@yh
1

0
@

1
A: (64)

Note that n, as written here, is generally not of unit length.
However, as noted in Section 2.3, the normalization constant is
subsumed into the Lagrange multiplier l.

C Block matrices

The matrices in eqn (23) are defined as

Xij ¼
ð
Cj

O ri � rð Þd2r (65)

and

Yij ¼
ð
Cj

T ri � rð Þnd2r; (66)

where the surface integral is performed over the polygonal cell
Cj around vertex j and ri is the position of vertex i. Furthermore,
in eqn (23), if vertex i is on the contact line, ci = yi/2p with
contact angle yi and otherwise ci = 1/2.

D Functional derivative and rigidity constraint

The functional derivative of F0 w.r.t. shape deformation is

�dF0

dr
¼ 2kglgn

��
lg
�2kglg cos yeqn

��
sl

þ glg cos yeq � cos y
� �

dclt
��
cl
�glg sinðyÞdclnsl

��
cl

(67)

which contributes to the r.h.s. of eqn (10). The first and second
terms are due to surface tension within the liquid–gas and
liquid–solid interfaces of the droplet, respectively, and k is the
local curvature of the respective interface.47 The third and
fourth terms on the right-hand side of eqn (67) comprise the
Young force acting locally on the contact line, where dcl is the
Dirac d-function centered at the location of the contact line.
The Young force has two components: one along unit vector t
tangential to the plane of the substrate and one along unit
vector nsl normal to the substrate.

In eqn (10) the last term is a rigidity force with which the
substrate acts to keep its shape against the interior pressure p0,
against the curvature force at the solid–liquid interface in the
second term on the r.h.s. of eqn (67), and the normal compo-
nent of the Young force in the fourth term. Because the rigidity
constraint with the Lagrange multiplier l needs to balance
these forces, the rigidity-constraint force frigid = G(x)l(x)n|sl

introduced in Section 2.4 reads

frigid = (2kglg cos yeq + glg sin(y)dcl|cl � p0)n|sl. (68)

Together with eqn (10) and (67) it results in eqn (11).

E Validation

To test our method we compare its result to an experiment
reported in ref. 38 and to a fit with our previous simulation
approach in ref. 14. In the experiment, a glycerol droplet (with
the material properties written in Section 2.7) is placed on a
substrate with equilibrium contact angle 64.31 starting from a
contact angle above this value. During the relaxation of the droplet,
its dynamic contact angle is recorded over time. To transfer the
parameters of the experiment to BEM, we simulate a droplet which
is initially in equilibrium with a contact angle close to the first
recorded angle in the experiment on a substrate with equilibrium
contact angle 64.31. As in the experiment, we measure the dynamic
contact angle y in our simulation by fitting a spherical cap shape to
the discretized liquid–gas interface at each time step and then
calculate y from the cap’s tangent at the contact line.

To compare our simulation to the experiment, we need to
convert our timesteps to SI units by explicitely calculating the
value of t for the experimental data as specified in eqn (41). In the
experiment, the volume of the droplet is reported to be at least V =

5 mm3 from which we calculate R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=2p3

p
¼ 1:34 mm. With

this value for R0 and the material properties written in Section
2.7, we calculate t = 1.7 s. We display both the experimental data
and the result of our simulation in Fig. 7 where we can see good
agreement, especially in the initial relaxation. The long-time
relaxation of the experimental data appears to be a bit slower
than our simulation data which may be due to defects on the
substrate which we do not consider in our method. The test
demonstrates that our method is able to reproduce the relaxation
of a real droplet as it is observed in experiment. Notably, because
we have carefully nondimensionalized our method, we do not
need to alter any simulation parameters to simulate smaller or
larger droplets; any change in droplet volume merely affects the
conversion of our timescale from t to seconds.
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Fig. 7 Diagram of the dynamic contact angle y over time t. Red dots
indicate the experimental data visually extracted from Fig. 2(a) in ref. 38
and the solid blue line shows our simulation data which has been con-
verted to ESI,† units with t = 1.7 s, the time scale implied by the parameters
of the experiment. The dash-dotted green line shows data from our
previous simulation approach in ref. 14 and the dashed black line indicates
the equilibrium contact angle yeq = 64.31.
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