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Controlling active turbulence by activity patterns†

Arghavan Partovifard, * Josua Grawitter and Holger Stark

By patterning activity in space, one can control active turbulence. To show this, we use Doi’s

hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting

isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced

paranematic state displays active turbulence, which we characterize by different quantities including the

energy spectrum, which shows the typical power-law decay with exponent �4. Then, we control the

active turbulence by a square lattice of circular spots where activity is switched off. In the parameter

space lattice constant versus surface-to-surface distance of the spots, we identify different flow states.

Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller

than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating

flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability

and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice

constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow

vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.

1 Introduction

Active matter refers to a collection of individual entities capable
of converting free energy from their surroundings into directed
motion.1–5 These systems are driven out of equilibrium by
the continuous injection of energy and thereby exhibit
interesting collective behaviors through the interactions of
their constituents. Examples are motility-induced phase
separation,6–9 dynamic clustering,10–12 various forms of cluster
formation,13–17 flocking,18–21 swirling22,23 and swarming.24–26

Most prominently, active fluids can display self-driven sponta-
neous and complex flow patterns that are correlated on lengths
larger than the size of individual active particles. These flow
patterns display chaotic-like spatiotemporal behavior that,
despite occurring at low Reynolds numbers, resemble classical
turbulence and are therefore known as active turbulence.27–35

This phenomenon has been observed in experiments with different
realizations of active fluids such as bacterial suspensions,27,28,36

cytoskeletal motor-protein suspensions,37–39 and cell colonies.40–42

In this article we show how active turbulence can be controlled by
spatially patterning activity.

The individual active units often have an elongated shape,
which allows the active fluid to be treated as a collection of rod-
shaped particles with head–tail symmetry. At sufficiently large

density, they develop long-range orientational order and in the
simplest case a nematic phase forms, where also topological
defects are observable.43,44 One widely used continuum model
for investigating active turbulence is the active-nematics
model.31,32,35,38,45,46 It employs the hydrodynamic equations
of a passive nematic liquid crystal supplemented by active
stresses,47 which are generated by the self-propelling particles.
Activity destroys the long-range orientational order and active
turbulence occurs. It is characterized by a flow pattern with
high vorticity, which displays chaotic dynamics in both space
and time and where topological defects continuously emerge
and annihilate.1,45,48,49 The described active-nematics model
allows for nematic order even in the absence of activity. It is
governed by the Landau-de Gennes free energy, an expansion in
the nematic order parameter, where specific parameters deter-
mine the degree of nematic ordering.

Nematic order in an isotropic liquid crystal can also be
induced by external fields or bounding surfaces, which then
results in a paranematic phase.44,50,51 Likewise, several articles
mention observations that some experimental systems do not
exhibit nematic order in the absence of activity.52,53 Therefore,
in our modeling we consider the active fluid to be in an
isotropic state when activity is switched off. To model the
dynamics of such a fluid, we utilize Doi’s hydrodynamic
equations for a semidilute solution of rods54 and add an
active-stress term to account for their activity.47 In agreement
with previous research works,52,53,55–57 we will demonstrate
that initially isotropic pusher solutions can generate local
nematic order solely due to activity. We refer to this state as
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the active paranematic state and show that it gives rise to
active turbulence above a threshold value for the absolute
pusher activity.

We characterize the observed state by its energy spectrum,
along with the mean scalar order parameter, the enstrophy, the
number of and distance between topological defects, as well as
vorticity and nematic-order correlation functions.

In recent years, there has been a growing interest in direct-
ing the flow and dynamics of active matter with the ultimate
goal of harnessing energy58–62 to power small-scale machines or
design functional materials.35,63 So far, geometrical confine-
ment has been the primary focus for controlling active matter.
For example, when an active fluid is confined to a narrow
rectangular channel, first a laminar flow is generated and then
with increasing channel width a range of distinct regular flow
patterns emerges such as oscillating and dancing flows.53,64–66

Other studies have explored weaker geometrical constraints. By
introducing a square lattice of thin pillars into a turbulent
bacterial solution, flow vorticity orders in an antiferromagnetic
lattice.67,68 Another approach to regularizing turbulent flow is
to interface the active fluid with a passive liquid crystal. Using a
passive lamellar smectic phase as a substrate for the active
nematic phase, experimental and theoretical studies showed
that the turbulent flow transforms into a regular flow pattern
consisting of lanes of alternating flow directions parallel to the
smectic layers.69,70

One very appealing approach for controlling flow patterns in
active fluids is to spatially pattern activity using photosensitive
materials. For example, genetically modified E. coli bacteria can
be activated by light and their swimming speed adjusted by
varying the light intensity.71,72 Another approach utilizes cytos-
keletal polymers powered by engineered motor proteins, where
the gliding velocities and directions of the motors are controlled
with light.73–75 Recent theoretical76–82 and experimental80 stu-
dies have highlighted the capability of using a spatially varying
activity for controlling the speed and orientation of topological
defects. Given the close relationship between the dynamics of
defects and the generated flow field in active turbulence,1,45,48,49

spatially varying activity provides a powerful tool for manipulat-
ing flow patterns in active fluids.

In this article, we introduce a square lattice of inactivity
spots, i.e., spots in which activity is turned off, to control the
turbulent flow patterns of active paranematics. By systematically
varying the surface-to-surface distance of the inactivity spots and
the lattice constant we present a state diagram which reveals
distinct flow states including trapped flow vortices. Most promi-
nently, for lattice constants below the vorticity correlation length
or an appropriately defined active length and for surface-to-
surface distances smaller than the nematic coherence length,
we observe a multi-lane flow state, where flow lanes with
alternating flow directions are separated by a street of vortices.
The flow pattern displays pronounced multistability and at the
transition to the isotropic active-turbulence state transient multi-
lane flow occurs.

The article is structured as follows. In Section 2 we introduce
the theoretical modeling of the active fluid based on Doi’s

hydrodynamic equations for a semidilute solution of rods,
which we supplement by an active stress tensor. Section 3
discusses turbulence in the active paranematic state and
Section 4 presents the state diagram as well as the different
flow states that emerge in the presence of a lattice of inactivity
spots. We end with a summary and conclusions in Section 5.

2 Theoretical modeling

We introduce the continuum equations for describing the
active fluid as a semidilute solution of self-propelling rods,
write them in a nondimensional form, and shortly explain the
pseudo-spectral method to numerically solve the equations as
well as the relevant parameters.

2.1 Continuum model

In contrast to standard models of active nematics, we consider
a continuum model for a solution of rigid rodlike particles with
activity and head–tail symmetry in two dimensions, which does
not show nematic ordering in the passive case. Thereby, it
allows us to study activity-induced nematic ordering. The
equations of motion describing the hydrodynamics of such a
liquid crystalline fluid are formulated in terms of a tensorial
order parameter also called alignment tensor and the velocity
field. The alignment tensor Q quantifies the local orientational or
nematic ordering of the rodlike particles. It corresponds to the
second moment of the orientational distribution function of the
rods:54,83 Q(x,t) = hq̂ # q̂ � 1/di. Here, the average goes over all
rods with orientational unit vector q̂ contained in a volume
element at position x and at time t and d is the spatial dimension.
Thus, the alignment tensor Q is symmetric and has zero trace.

We consider a system in two dimensions. Then, the eigen-
vector n (with |n| = 1) corresponding to the largest eigenvalue S
is called director. It indicates the mean direction of the rods
and the scalar order parameter S quantifies how well the rods
are aligned along n. Since Q is traceless, we can immediately
write in two dimensions:

Q ¼ S n� n� 1

2

� �
; (1)

where 1 is the identity tensor. In the following, we consider a
semidilute solution of rodlike particles such that without
activity the system is in the isotropic state. This means the
concentration of the rodlike particles is below the critical
concentration, where passive rods develop nematic order.

For the dynamics of the Q tensor, we follow the approach
proposed by Doi for a semidilute solution of rodlike particles.54

Doi’s theory is based on the Smoluchowski equation for the
orientational distribution of rods, from which one derives

@tQþ u � rQ� L Qþ 1

2

� �
� Qþ 1

2

� �
LT þ 2L �Q Qþ 1

2

� �

¼ �4cDrQþD2r2Q

(2)

where L = r# u is the velocity gradient and we use A�B = AijBij.
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The first two terms on the LHS of the eqn (2) is the material
time derivative describing the usual time evolution of a quantity
that advects with fluid flow of velocity u. The terms containing
the velocity gradient appear in this equation because the Q
tensor can be rotated and stretched by flow gradients. The first
term on the RHS of eqn (2) stands for the relaxation of the order
parameter towards its equilibrium value. In Doi’s model cDr is
the effective rotational diffusion coefficient in the semidilute
solution of rods, where Dr is the rotational diffusion coefficient
of a single rod and the parameter c quantifies the reduction due
to neighboring rods. We quantify it in Appendix A. If the order
parameter varies with the position, there is a tendency to smooth
out gradients that leads to a term proportional to the Laplacian
of Q with a coefficient D2.54 Since we consider a solution of
rodlike particles that is isotropic in thermal equilibrium, mean-
ing when there is no activity in the system, eqn (2) does not
contain terms of higher order in Q that are responsible for
developing nematic ordering.

We consider an incompressible active fluid with constant
density r. Then, the velocity field of the fluid obeys the
continuity and the Navier–Stokes equations,

r�u = 0 and qtu + u�ru = �rp + rR, (3)

where p = P/r with P the pressure and R = Rv + Rp + Ra is the
stress tensor, which consists of three contributions specific for
the considered fluid. First, there is the viscous stress tensor of a
Newtonian fluid,

Rv = n(L + LT), (4)

where n is the kinematic shear viscosity. Second, the rodlike
particles contribute a passive, disspative part,

Rp ¼ 6nZpL �Q Qþ 1

2

� �
; (5)

where Zp is a dimensionless parameter proportional to the
volume fraction of the rods, which we quantify in Appendix A.
Finally, active particles act with a dipolar force field on the
surrounding fluid. The excerted active stress can be written as,47

Ra = WQ. (6)

The coefficient W = �pnr/2 is named activity, where nr is the
number density of active rods and p is the force dipole of the
rod. The sign of W depends on whether the active particles are
pushers that generate extensile stresses (W o 0) or pullers that
generate contractile stresses (W 4 0).

2.2 Nondimensional equations

We nondimensionalize our equations by introducing a char-
acteristic length x0 and time t0 defined, respectively, as

x0 ¼
ffiffiffiffiffiffi
n
Dr

r
and t0 ¼

1

Dr
; (7)

where Dr is the rotational diffusion coefficient of a single rod.
Rescaling length and time in our dynamic equations, we arrive
at the reduced velocity and the following dimensionless

parameters:

~ui ¼
uiffiffiffiffiffiffiffiffi
Drn
p ; ~D2 ¼

D2

n
; ~p ¼ p

Drn
; and ~W ¼ W

Drn
: (8)

In writing the nondimensional eqn (2) and (3), we drop the tilde
for ease of notation and arrive at,

r�u = 0 (9)

@tuþ u � ru ¼ �rpþr2u

þr 6ZpL �Q Qþ 1

2

� �
þWQ

� �
(10)

@tQþ u � rQ� L Qþ 1

2

� �
� Qþ 1

2

� �
LT þ 2L �Q Qþ 1

2

� �

¼ �4cQþD2r2Q

(11)

2.3 Numerical method and simulation parameters

The set of nondimensional dynamic eqn (9)–(11) are solved
numerically using the pseudo-spectral method for spatial
discretization84,85 and the 4th order Exponential Time Differencing
Runge–Kutta scheme ‘‘HochOst4’’ for integration in time.86 The
projection method is used to implement the incompressibility
condition for the velocity field.87

The simulations are performed on a square domain with
edge length L and N � N grid points, which will be specified for
each simulation. Due to the pseudo-spectral method periodic
boundary conditions are fulfilled and N also is the number of
wave vectors in one spatial direction.

For all simulations, grid size control is performed to ensure
the independence of the results on the number of grid points.
All simulations are initiated with u = 0 and Q = 0 corresponding
to the isotropic distribution of rodlike particles and no flow.

In all our simulations, we fix the following parameters to Zp = 3
and c = 0.1, which corresponds to a semidilute solution of rodlike
particles according to Doi’s theory. We also use D2 = 10�3 and a
wide range of activity parameters W. More details about the
parameters that are used in this paper can be found in Appendix A.

3 Turbulence in an active paranematic
state

For zero activity W the ground state described by our
hydrodynamic equations is simply the isotropic state. Using a
stability analysis, we show that for a sufficiently negative
activity, the isotropic state becomes unstable. It develops
into active turbulence, which we then characterize by different
quantities. Since the nematic order is purely due to activity, we
call it an active paranematic state similar to paranematic order
generated by external fields or bounding surfaces.44,50,51

3.1 Linear stability analysis of the isotropic resting state

The nondimensional hydrodynamic eqn (9)–(11) for the active
fluid have a steady-state solution with u0 = 0 and Q0 = 0, which
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corresponds to the isotropic state of the resting fluid. We
perform a linear stability analysis of this state with respect to
small perturbations, dQ and du. More details of the stability
analysis can be found in Appendix B. We use a plane-wave ansatz
for the perturbations, du = dû(k,x)ext�ik�r and dQ = dQ̂(k,x)ext�ik�r,
with the wave vector along the x direction, k = (k,0). The stability
analysis reveals only one unstable mode, where the growth rate,
the real part Re x, can be become positive. For the complex
growth rate, we find the dispersion relation

x ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2 � 1Þk2 þ 4cð Þ2�2Wk2

q
� 1

2
ðD2 þ 1Þk2 � 2c: (12)

In Fig. 1(a) the growth rate Re x is plotted versus wave
number k for different activities W. For activities below a
threshold, W o Wc = �8c, the growth rate becomes positive
in a range of wave numbers, which for our chosen parameter,
c = 0.1, gives Wc = �0.8. The region of unstable wave numbers

for different activities are illustrated in the diagram of Fig. 1(b).
Thus, the isotropic state of a semidilute solution of pusher rods
becomes unstable for W o �0.8 and as a consequence a
spatially varying nematic order and flow field emerge. It devel-
ops in what is called active turbulence, which we characterize in
the following Section 3.2.

To explain the physical mechanism of the instability, we
follow the arguments of ref. 52, which are readily quantified by
eqn (10) and (11). Once a local order of the active rods develops
spontaneously, it drives a shear flow, which in turn aligns the
rods along the extensional axis of the shear flow. Now, pushers
support the shear flow in such an alignment, while pullers
weaken it and, therefore, they cannot sustain it.88 This explains
the instability for pushers. In contrast to ref. 52, we include the
relaxation term�4cQ in eqn (11), which acts against alignment.
So the instability does not start at W = 0 but at Wc = �8c.

3.2 Characterization of active turbulence

We numerically solved the governing eqn (9)–(11) for a range of
activities W. In Fig. 2(c) we present the nematic scalar order
parameter S averaged over space and time as a function of W.
For W o Wc = �0.8, S develops a nonzero value indicating the
emergent nematic order in the initially isotropic solution of
active rods. Note that the nematic order is solely due to activity
since in thermal equilibrium the free energy used by us would
just give S = 0. The averaged scalar order parameter as a
function of W can be fitted by a power law with exponent
0.33. A snapshot of the director field in Fig. 2(a) for W = �3.25
shows domains with uniform director orientation while in the
regions between the domains the director field is strongly

Fig. 1 (a) Growth rate Re x versus wave number k for different activities W.
(b) The shaded region in the k � W plane indicates unstable modes with
Re x 4 0.

Fig. 2 Turbulence in active paranematics: (a) a snapshot of the director field (black lines) and the scalar order-parameter field S (background color) for

W = �3.25. In addition, �1
2

defects are indicated. (b) A snapshot of the velocity streamlines (black) and the vorticity field rescaled by its maximum value

o/om (background color) for W = �3.25. (c) Mean scalar order parameter S (dots) and enstrophy O (triangles) plotted versus activity W. (d) Density of þ1
2

(red dots) and �1
2

(cyan dots) defects and the total density cd of �1
2

defects (blue dots) plotted versus W.
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distorted. It shows walls andþ1
2

and�1
2

topological defects,89,90

indicated by red and cyan dots, respectiveley that develop and
annihilate each other over time. This is illustrated in video 1 in
the ESI,† 91 which shows the temporal evolution of director and
scalar order parameter fields. The coexistence of walls and
defects is in agreement with other studies, including systems
without a prescribed ordering free energy92 as well as conven-
tional active nematic models.45,93–95 Fig. 2(d) plots the defect
densities versus W. In particular, the density increases with
absolute activity meaning the mean distance between defects
decreases. We also note that the densities of +1/2 and �1/2
defects remain equal across all activity levels.

The distorted director field and its continuous reconfigura-
tion, which looks chaotic, drives the fluid flow. A snapshot of
the velocity field lines together with the color-coded vorticity
o = |r � u| are illustrated in Fig. 2(b). The chaotic flow pattern
consists of vortices of different sizes and shapes. Video S2 in
the ESI† 91 illustrates the temporal evolution of velocity and
vorticity fields.

In order to gain more insights and quantify the flow field
and the orientational order, we define the normalized spatial
correlation functions for vorticity,

CooðRÞ ¼
hoðrÞoðrþ RÞi
hjoðrÞj2i (13)

and the order parameter,93

CQQðRÞ ¼
hQðrÞ �Qðrþ RÞi � hQðRmaxÞ �QðrÞi

hQðrÞ2i � hQðRmaxÞ �QðrÞi
; (14)

where the average is performed over space and time and Rmax is
the maximal distance vector with Rmax = L/2. In Fig. 3(a) we plot
both correlation functions averaged over all directions of R for
different activities. Interestingly, for all activities both Coo(R)
and CQQ(R) exhibit the same dependence on R as previously
demonstrated and argued in ref. 93. As the distance R
increases, the correlation functions decay, become negative,
and eventually approach zero. We define the correlation length
z by the distance, where the correlation functions first become
zero. The correlation length z is a measure for the mean size of

the generated vortices but also for how far the correlated orienta-
tional order extends. We plot it in Fig. 3(b) versus activity W.
A larger activity |W| generates smaller vortices. It also decreases
the extend of orientational order, which we attribute to the
increasing number of topological defects that disturb this order.
Indeed, the mean distance of defects estimated from the defect
density cd in Fig. 2(b) as d ¼ 1=

ffiffiffiffiffi
cd
p

nicely aligns with z as Fig. 3(b)
demonstrates.

The correlation length roughly follows the activity depen-
dence of the wave length lm = 2p/kmax of the most unstable
mode, which we calculated in our linear-stability analysis [see
eqn (27) in Appendix B]. This suggests that already lm provides
the relevant length scale for active turbulence and we also call it
active length in the following. Accordingly, the divergence of lm

at Wc = �0.8 should also be observed for the correlation length z.
Another important characteristic length of the system is the
nematic coherence length.44,46,96 In our reduced units it

amounts to ln ¼
ffiffiffiffiffiffiffiffiffiffiffi
D2=c

p
. This length, irrespective of the origin

of the nematic order, for example, due to activity in our system,
gives the distance over which order is maintained.

Additionally, we quantify the strength of the generated vortices by

the enstrophy O ¼ 1

A

Ð
ðr� uÞ2d2r, where the integral goes over the

whole simulation box with area A. In Fig. 2(c) we plot the enstrophy
with purple triangles versus W and fit it by a power law with exponent
1.64. For larger activities |W| stronger vortices are created, while for
W 4 Wc vortices do not exist, of course. In summary, an increase in
the absolute activity leads to the formation of stronger yet smaller
vortices. Concurrently, the number of defects increases and their
mean distance d decreases in nice agreement with the behavior of
the vorticity and orientational correlation length z.

Finally, in Fig. 4 we plot the energy spectrum E(k) p

kh|u(k)|2i for different activity values, where the wave number
is rescaled by kmin = 2p/L, with L the size of the simulation box.
For all values of activity, the energy spectrum E(k) shows the
typical power-law decay pk�4 for larger k values, in accordance
with literature.32,96–98 However, to observe the scaling at small k
values with a positive exponent, the box size in our simulations
is not sufficiently large.32,96

Fig. 3 (a) The vorticity Coo(R) and order parameter CQQ(R) correlation
functions versus distance R for different values of activity. (b) The correla-
tion length z (red dots), mean distance of defects d ¼ 1=

ffiffiffiffiffi
cd
p

(green dots),
and the wavelength of the most unstable mode lm (solid line), obtained
from a linear stability analysis, both plotted versus activity W.

Fig. 4 Energy spectra E(k) for several activities in the state of active
turbulence. The wave number is rescaled by the minimum wave number
kmin = 2p/L. A power-law decay is indicated by the dashed line.
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4 Controlling active-fluid flow by an
activity pattern

Aiming to control the flow field in an active fluid, we pattern
the activity with a square lattice of circular spots, where activity
is switched off and which we refer to as inactivity spots. In the
region between the spots, activity has a constant value W =
�3.25, which creates a sharp boundary between active and
inactive regions. The lattice is characterized by two parameters:
the lattice constant L and the surface-to-surface distance
between spots d.

Specifically, we study a periodic square lattice consisting of
8 � 8 inactivity spots as depicted in Fig. 5. In the following we
review the state diagram resulting from variations in L and d
and then introduce the different flow states in more detail.

The activity W = �3.25 is chosen since with an average order
parameter of 0.55 the system displays well established orienta-
tional order. Furthermore, the lattice of 8 � 8 inactivity spots
shows all the relevant states and features of such lattices, while
maintaining computational efficiency.

4.1 State diagram in the presence of the activity pattern

We perform numerical simulations over ranges of lattice con-
stant L and surface-to-surface distance d and construct the
resulting state diagram, as illustrated in Fig. 6. Our parameter
scan reveals four distinct states.

First, the state that we refer to as multi-lane flow is the most
interesting state. It arises for lattice constants L less than a
critical value of L* E 0.9 and surface-to-surface distances d
below a critical value d* = 0.09. Note that all lengths are given in

units of
ffiffiffiffiffiffiffiffiffiffiffi
n=Dr

p
and we will comment on them below. The

velocity field in this state exhibits an interesting pattern of
unidirectional flow lanes with adjacent lanes flowing in oppo-
site directions. They are separated by a series of corotating
vortices known as vortex street [see Fig. 7(a)].99,100 We will
discuss this state in more detail in the next section. To get
more insight and for later discussions, we note that the critical
lattice constant L* = 0.9 is below but close to the active length
lm, which for the specific parameters amounts to lm = 0.97. It is
also close to the correlation length z = 1.2. Furthermore, the

critical spot separation d* = 0.09 is approximately the same as
the nematic coherence length ln = 0.1, which we introduced in
Section 3.2.

The second state, which we refer to as trapped vortex state
(see Section 4.3), occurs for large lattice constants L4 L* = 0.9
and small spot distances d r 0.4. In this state vortices are
trapped in the active regions between the spots. They act like
barriers, which vortices cannot easily cross. Adjacent to the
multi-lane and trapped vortex states for increasing spot dis-
tance d, the system exhibits an isotropic turbulent state equiva-
lent to bulk active turbulence, i.e., in the absence of spots for
d = L. Only the extension of the vortices generated in the
turbulent flow are smaller. Finally, between the isotropic and
multi-lane flow states, a highly dynamic state emerges char-
acterized by frequent transitions between isotropic and imper-
fect multi-lane configurations. We refer to this state as the
transition state and will discuss its properties in Section 4.2.2.

4.2 Multi-lane flow state

The velocity field in the multi-lane flow state, as illustrated in
Fig. 7(a), develops a pattern of unidirectional flow lanes with
alternating directions. To invert the flow direction, a series of
corotating vortices, known as vortex street and situated between
neighboring lanes, is needed. The velocity field of the multi-
lane flow is sketched in Fig. 7(b), where we show the stream-
lines of four vortex streets using the analytic expression in
Appendix C. Vortices in two neighboring streets are counter-
rotating.

Of course, the lanes in the simulations can either be
oriented along the x or y direction. Fig. 7(c) displays the y
component of the velocity profile along a horizontal cut of the
flow field in (a) as indicated by the green line. The centers of the

Fig. 5 Activity pattern: a square lattice of circular inactivity spots with
surface-to-surface distance d and lattice constant L is applied to the active
fluid. Activity is zero in the circular dark purple regions, while it has a finite
magnitude of W = �3.25 in the yellow-colored regions.

Fig. 6 State diagram of the active fluid at activity W =�3.25, controlled by
a square lattice of inactivity spots, in terms of lattice constant L and
surface-to-surface distance d. Four distinct states exist: multi-lane,
trapped vortex, isotropic, and transition. The curve L = d corresponds to
bulk turbulence without any spots. The red dashed lines indicate the
parameter scan of Fig. 11 and 14, respectively.
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vortex streets are situated at uy = 0 and regions of shear flow are
separated by small plateaus indicating uniform flow. We will
come back to the shear flow when discussing the director field
associated with the multi-lane flow in Section 4.2.1. Of course,
the probability density function (PDF) of the vorticity, P(o), as
shown in Fig. 7(d), deviates strongly from a normal distribu-
tion, which occurs for the isotropic active turbulence state.

The system in the multi-lane flow state exhibits multistabil-
ity. Depending on the small random initialization of the
velocity and Q tensor field, different realizations of this state
exists. They differ in the number and widths of the unidirec-
tional flow lanes and the location of the vortex streets. In Fig. 8
we show two realizations with two flow lanes of opposite
direction. However, in (a) the vortex streets sit on the activity
spots, while in (b) they are situated in between.

4.2.1 Director field in the multi-lane flow state. Next, we
describe the director field in the multi-lane state. It also
exhibits an ordered structure, which corresponds to the flow
lanes. In Fig. 9(a) we show the director field for the multi-lane
flow in Fig. 7(a). Nematic order is mainly visible in the active
regions between the spots. We measure the angle y of the
nematic director with respect to the mean flow axis along the

y direction. Along the lines I and II in Fig. 9(a), it varies in the
relatively narrow range of y A [251, 411] or [�411, �251], as
illustrated in Fig. 9(c). The probability distribution of the nematic
angle in Fig. 9(b) reflects this specific director arrangement with
two major populations centered around �281 and �401.

In passive nematics at large Ericken numbers,101,102 where
elastic deformation forces are negligible against viscous forces,

Fig. 7 The multi-lane flow state for L = 0.6 and d = 0.04. (a) Flow lines (in black) and normalized vorticity (background color) of the velocity field. Large
arrows indicate the flow direction within the lanes and omax is the maximum vorticity. (b) Schematic of the flow field with four vortex streets using the
analytic expression of eqn (28). (c) The y component of the velocity field, uy(x), plotted along a horizontal cut in x direction as indicated by the green line in
(a). (d) Probability density function (PDF) of the vorticity P(o).

Fig. 8 Two alternative configurations of the multi-lane state with two
flow lanes compared to the one in Fig. 7(a). Vortex streets either sit on the
activity spots (a) or in between (b).

Fig. 9 Director field in the multi-lane flow state for L = 0.6 and d = 0.04.
(a) Scalar order parameter S quantified by the background color and the
director field shown by black lines. (b) Probability density function (PDF) of
the nematic angle y measured against the mean flow direction along the y
axis. (c) Nematic angle y plotted versus coordinate y/L along the two lines I
and II as indicated in plot (a). (d) For a region of the spot lattice containing
lines I and II, the background color represents the rescaled flow extension
rate A/Amax, while the black lines depict the extensional direction vectors
scaled by A. The orientation of the extensional axes in two regions situated
between four spots are indicated.
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the nematic director field is primarily determined by the velocity
profile. In particular, when subjected to shear flow the director
exhibits shear alignment with the Leslie angle101,102

yL ¼ �
1

2
cos�1

3S

S þ 2

� �
; (15)

measured against the flow direction. Indeed, as we have already
demonstrated in Fig. 7(d), the multi-lane flow state exhibits
shear flow between adjacent flow lanes. Fig. 9(a) shows two
distinct regions of nematic order. The first lies between two
adjacent spots with S = 0.415, which gives yL = �29.51 in nice
agreement with the nematic angle corresponding to the two
peaks of the angular distribution in Fig. 9(b) at �271. However,
the second region between four spots has S = 0.54 and yL =
�25.31, which deviates from the nematic angle at �411 as given
by the two other peaks.

To rationalize this observation, we note that at large Erick-
sen numbers flow and director field are connected by the
hydrodynamic equation:103

(lA + X)n = ln�Ann (16)

where A = (L + LT)/2 and X = (L � LT)/2 represent the strain-rate

and vorticity tensors, respectively, and l ¼ 3S

S þ 2
. For linear

shear flow one readily derives the Leslie angle from this
equation. However, from Fig. 7(a) we notice that the vorticity
in the regions between the four spots is nearly zero. In this case
(X = 0), the nematic director aligned along the two eigenvectors
of A solves eqn (16) and the stable orientation is the extensional
direction belonging to the positive eigenvalue or extension rate
A.104 In Fig. 9(d) we show the extensional directions scaled by
the extension rate. Indeed, in areas between the four inactivity
spots, their orientations with respect to the mean flow direction
are �451. This is in close agreement with the nematic angles
y = �411 obtained for these regions.

We are now in a position to give a qualitative explanation for
the observed multi-lane flow state. The vertical rows of inactiv-
ity spots are able to align the local activity-induced nematic
order such that the regular structure visible in Fig. 9(a) occurs.
The structure is stable once the spacing between the spot
surfaces is below the nematic coherence length. The nematic
order between the spots then drives a shear flow, which extends
into the vertical rows of spots. Here the flow becomes roughly
uniform since in the inactivity spots nematic order is zero. This
reasoning is further supported by considering the multi-lane
flow field in Fig. 8(a), where only two vortex streets exist, and by
plotting the corresponding nematic order in Fig. 10(a) as well as
the vertical velocity component uy along the dashed green line
in Fig. 10(b). The vortex streets are located at uy = 0. From here,
a steep increase of uy indicates the shear flow between the
vertical rows of spots. Then, the velocity uy enters a plateau of
uniform flow, which is followed again by a steep increase and a
further plateau. Since the strength of the flow field cannot
increase ever further, the trend has to be reversed as in
Fig. 10(b). Ultimately, the flow direction reverses, for which a
vortex street is needed.

4.2.2 Flow order parameter: transition from isotropic to
the multi-lane flow state. In the following we address in more
detail the sequence of isotropic, transition, to multi-lane flow
state, which occurs for lattice constants Lr 0.8 and decreasing
spot distance d in the state diagram of Fig. 6. In order to clarify
the nature of the transition state, we introduce a flow order
parameter g that quantifies the degree of unidirectionality in
the flow but also takes into account the reversal of the flow
direction as observed in the multi-lane state. In full analogy of
analyzing nematic order, we formulate the traceless tensorial
flow order parameter

C = 2hû # û � 1/2i, (17)

where the unit vector û = u/u gives the local direction of the
velocity field and h. . .i denotes averaging over both space and
time. The scalar flow order parameter g is then defined as the
positive eigenvalue of C. For completely random flow g = 0,
while a uniform flow gives g = 1.

In Fig. 11 we plot g versus the spot distance d for lattice
constant L = 0.6 along the red dashed line in the state diagram
of Fig. 6. For each value of d, we performed eight simulation
runs starting from the isotropic state Q = 0 and small random
disturbances of the resting fluid u = 0. For d 4 0.12 including
bulk active turbulence at d = L = 0.6, the order parameter g
takes on values less than 0.1 indicating that there is no
preferred direction for the velocity. So the flow state is isotropic
as expected for active turbulence. Then, in the range d A
[0.08,0.12] we observe a highly dynamic transition state with
medium values of the flow order parameter between 0.1 and
0.3, which we will characterize further below. Finally, for d o
0.08 the multi-lane flow state with g 4 0.5 is predominantly
observed indicating the unidirectional flow throughout the
system.

Before we address the transition state, we remark that
similar to the multi-lane flow state, which shows multi-
stability, we also observe different states in the eight simulation
runs for the same d, as Fig. 11 shows. For example, in the
parameter region, where the majority of the simulations end up
in the transition state, we also find isotropic active turbulence
and multi-lane flow. More concrete, at d = 0.1 five simulation
runs exhibit the transition state, one the multi-lane flow state,

Fig. 10 Director field in the multi-lane flow state corresponding to
Fig. 8(a). (a) Scalar order parameter S quantified by the background color
and the director field shown by black lines. (b) The y component of the
velocity field, uy(x), plotted along a horizontal cut in x direction as indicated
by the white dashed line in (a).
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and two the active turbulence state. Similarly, also in the multi-
lane flow state one simulation out of eight ends up in the
isotropic turbulent state. Thus, at small d our system is char-
acterized by a high degree of metastability.

The transition state shows intermittent switching between
an imperfect multi-lane and a strongly disordered flow state as
indicated in video 3 in the ESI.† 91 To quantify this, we calculate
the tensorial flow order parameter of eqn (17) for each time
snapshot by only averaging over space and then take its positive
eigenvalue gs as the order parameter. The time evolution of gs

for d = 0.12 is depicted in Fig. 12 and shows strong fluctuations
with peaks going up to gs = 0.4. Here, the flow field is

disordered but locally flow lanes and larger vortices are obser-
vable as illustrated by the left inset of Fig. 12. Most pronounced
is the large peak in the center where the multi-lane flow
appears transiently and then vanishes again (right inset). In
contrast, the time course of gs in the isotropic state only shows
mild fluctuations around a mean value close to zero, while in
the multi-lane flow state, it is fixed at a high value. This is
quantified by the standard deviation Dgs determined for the
time-varying order parameter and plotted versus d in the inset
of Fig. 11. While in the transition state values for Dgs up to 0.14
are observed, it is zero in the multi-lane flow state and below
0.6 in the isotropic and active-turbulence state. The time
evolution of velocity and vorticity fields for the isotropic and
multi-lane states can be observed in videos 4 and 5 in the
ESI,† 91 respectively.

4.3 The trapped vortex state

As depicted in Fig. 6, the system is in the trapped vortex state for
Lr 0.9 and for sufficiently small surface-to-surface distances of
the spots, d r 0.4, while for d 4 0.4 it assumes the isotropic
turbulent state. Typical snapshots in Fig. 13 illustrate the flow/
vorticity fields (a) as well as the scalar order parameter and
director field (b) of the trapped vortex state. One clearly notices
vortices in the active region between the inactivity spots, while
within the spots vorticity is weak. Thus, vortices are trapped in
the active region between the spots and hardly enter them.
Interestingly, the vortices are accompanied by a very dynamic
director field, as video 6 in the ESI† 91 illustrates. It contains
some defect structure, which, however, is hard to classify.

To quantify this observation more thoroughly, we deter-
mined the probability distribution of the vorticity, P(o), (insets
of Fig. 14) and plotted the kurtosis of P(o) versus d in Fig. 14.
The kurtosis

Kurt½PðoÞ� ¼ m4
s4
� 3 (18)

where m4 is the fourth central moment and s the standard
deviation, measures how much P(o) deviates from a Gaussian
distribution. For dZ 0.5, the kurtosis is close to zero indicating
isotropic active turbulence with a normal distribution for
vorticity. However, the kurtosis gradually increases from d =
0.4 with decreasing d, which identifies the trapped vortex state

Fig. 11 The flow order parameter g versus spot distance d for fixed lattice
constant L = 0.6. For each d the outcome of eight different simulation runs
are shown. The two red dashed lines indicate the range of the transition
state. Inset: Standard deviation Dgs of the time series of the instantaneous
order parameter gs (calculated for each snapshot) is plotted versus d.

Fig. 12 Time evolution of the instantaneous order parameter gs in the
transient state at L = 0.6 and d = 0.12. The two snapshots illustrate flow
and vorticity field, where locally flow lanes and larger vortices are obser-
vable (left), and of a transient multi-lane flow (right).

Fig. 13 The trapped vortex state for L = 1.0 and d = 0.04. (a) Velocity
(lines) and vorticity (color-coded) fields. (b) Scalar order parameter (color-
coded) and director (lines) fields.
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as an own state. The distribution P(o) has a pronounced peak
around o = 0, which results from the low vorticity in the
inactive region of the spots. It then becomes exponential until
o E �1 indicating the trapped vortices. The vorticities of the
trapped vortices continuously switch between positive and
negative values. However, we do not identify any regular pattern
in the vorticity values as detailed in Appendix D.

5 Conclusions

In this article we have studied an active fluid in two dimensions
using Doi’s hydrodynamic equations for a semidilute solution
of self-propelled rods and an additional active stress tensor. In
contrast to the widely used active-nematics model, the ground
state of our equations in the absence of activity does not show
any nematic order. A linear stability analysis reveals that pusher
solutions become unstable below an absolute threshold activity
|Wc|. The range of unstable wave numbers, their growth rate,
and the wave number of the most unstable mode increase for
more negative activities.

To determine the resulting paranematic state induced by
activity, we solve the full hydrodynamic equations using the
pseudospectral method. The emerging nematic order is accom-
panied by fluid flow with chaotic spatiotemporal behavior and
high vorticity, which are characteristic features of the active-
turbulence state. In particular, the energy power spectrum
shows the typical power-law decay of active turbulence with
exponent �4. The mean scalar order parameter and the enstro-
phy, quantifying the strength of the generated vortices, grow
according to power laws beyond the absolute threshold value
|Wc|. Furthermore, the vorticity and nematic correlation
lengths, along with the mean distance between topological
defects, which are all nearly identical, approximately follow
the wavelength of the most unstable mode and decrease as the
magnitude of activity increases. We call the wavelength of the

most unstable mode as the active length, which together with
the nematic coherence length provides two important length
scales of the system.

In order to control active turbulence, we investigated the
active fluid in the presence of a square lattice of inactivity spots
for a specific activity value. The resulting state diagram in
the parameter space, lattice constant versus surface-to-surface
distance of the inactivity spots, is presented in Fig. 6. Most
interestingly, for lattice constants below the active length and
for distances between spots smaller than the nematic coher-
ence length, we observe the multi-lane flow state. The fluid
flows in parallel lanes, where the flow directions in neighboring
lanes is reversed by a street of corotating vortices situated
between the lanes (see Fig. 7). This flow state exhibits multi-
stability, as the width and position of the lanes and vortex
streets vary with the random initial conditions. We speculate
that by ‘‘shaking’’ the lattice of inactivity spots or single spots,
one is able to control which of the states is realized. The
nematic director in the active regions shows shear alignment
along the mean flow direction at two characteristic angles,
which can be explained by conventional nematodynamics.
Increasing the surface-to-surface distance of the spots, isotro-
pic active turbulence is recovered. However, a transition region
exists with a strongly fluctuating flow order parameter and
where imperfect multi-lane flow appears transiently.

Finally, for lattice constants larger than the active length, we
observed the trapped vortex state, where vortices are confined
to the active regions between the inactivity spots that strongly
restrict the vortices’ motion, while in the spot region vorticity is
very low. This results in a pronounced peak of the vorticity
distribution at zero vorticity, which therefore deviates from a
Gaussian shape. With increasing spot distance the peak
vanishes and isotropic active turbulence with a Gaussian vor-
ticity distribution is recovered.

Doi’s theory treats the nematic liquid crystal in the flow
aligning regime assuming needlelike molecules, where the so-
called flow aligning parameter assumes its maximum value
one. However, it is known that nematics, depending on the
molecule size and aspect ratio, can also exhibit flow tumbling
behavior for a sufficiently small flow aligning parameter, as
noted in ref. 45, 53, 70 and 101. So, the question arises about
potential changes in the different flow states reported in this
paper, when the active nematics is in the flow tumbling regime.
We expect that tumbling of the director disrupts the formation
of stable lanes, a phenomenon also observed in ref. 70, such
that the multi-lane flow state will be replaced by either turbu-
lent or zero flow depending on how deep the system is in this
regime. We do not foresee any significant alterations to the
trapped vortex state, as the formation of this state primarily
depends on the vortices being trapped in the active regions,
which should remain unaffected by variations in the flow
aligning parameter.

Thus our work provides insight into the emergence of
orientational order and active flow in dilute pusher-rod solu-
tions and presents a novel approach for controlling active
turbulence by employing a cubic lattice of inactivity spots.

Fig. 14 The kurtosis Kurt[P(o)] of the vorticity distribution plotted versus
the spot distance d for L = 1.0. (along the red dashed line in Fig. 6) Insets
show the probability density function (PDF) of the vorticity, P(o), for the
trapped vortex and isotropic turbulence states.
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In future research we plan to implement different lattice
patterns of inactivity spots, such as a checkerboard square
lattice with alternating spot sizes, a hexagonal lattice, or a
Kagome lattice but also to make the spots active instead of
the regions in between and to investigate the emergent flow
states. These are just a few promising examples for creating
novel and programmable flow patterns out of active turbulence
with the help of spatio-temporal activity patterns. We hope our
work stimulates further experimental and theoretical explora-
tion in this direction also using spatially controlled activity
using photosensitive materials.
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Appendices
A. Parameters

In Table 1 we explain the parameters used in this paper and
state specific values. One of the advantages of Doi’s approach
for deriving the dynamic equations for a semidilute rod
solution is that phenomenological coefficients are related to
molecular parameters as summarized in Table 1 following ref.
54. For example, the coefficient of the relaxation term in eqn (2)
is given as cDr. Here, Dr is the rotational diffusion coefficient of
a single rod of length l and aspect ratio a diffusing in a fluid of
dynamic viscosity m. The correction factor c = b/f2 takes into
account the reduced rotational diffusion in the semidilute
regime. It contains the factor f = nrl

3 with the number density
nr. Thus, f quantifies the fraction of excluded volume occupied
by a rotating rod, while b is a numerical factor. Furthermore,

Zp = pf/24 controls the contribution of the passive rods to the
viscous stress tensor in eqn (5). Finally, we note to occupy
the semidilute regime, the rod concentration should fall into

the range
1

l3
o nr o

a
l3

.

B. Linear stability analysis

We consider the basic solution of eqn (9)–(11), u0 = 0 and Q0 = 0,
which corresponds to the isotropic state of the rod solution
with no flow. The velocity and alignment tensor fields are
perturbed around the basic solution such that: u(x,t) = du(x,t)
and Q(x,t) = dQ(x,t). By substituting the perturbed fields into
eqn (9)–(11) and only taking into account terms linear in the
perturbations, the dynamic equations become

qtdu = �rp + r2du +r(WdQ) (19)

@tdQ ¼
1

2
Lþ LT
� �

� 4cdQþD2r2dQ: (20)

We transform the dynamic equations into Fourier space by
making the plane-wave ansatz, du = dû(k,x)ext�ik�r and dQ =
dQ̂(k,x)ext�ik�r. Furthermore, applying the divergence operator
on both sides of eqn (19) and using the incompressibility
condition one obtains r2p = r�(r(WdQ)). Converting this
expression into Fourier space gives,

p̂ðkÞ ¼ �W k

k2
� dQ̂k; (21)

where k2 = k�k. Then the governing equations for the perturba-
tions fields in Fourier space gives,

xdû ¼ �k2dû�W idQ̂k� i
k

k2
k � dQ̂k

� �
(22)

Table 1 Material and simulation parameters of a semidilute rod solution used in this article following ref. 54

Parameter Description Formula Value Unit

m Dynamic viscosity — 10�3 N s m�2

r Density — 103 kg m�3

n Kinematic viscosity m
r

10�6 m2 s�1

l Length of individual active rod — 10�5 m
a Aspect ratio of individual rods — 50 —
xr Rotational friction coefficient pml3

3 lnðaÞ
3.25 � 10�22 N s m

Dr Rotational diffusion coefficient kBT

xr

1.3 � 10�2 rad2 s�1

nr Number density of particles — 2.3 � 1016 m�3

f Characterizes fraction of excluded volume in the semidilute regime nrl
3 20 —

Zp Parameter controlling the strength of the passive contribution of the rods to the stress tensor pf
24

3 —

b Numerical factor 40 —
c Correction factor of rotational diffusion coefficient in the semidilute regime b

f2

0.1 —

D2 Coefficient of Laplacian term in Q 10�9 m2 s�1

D̃2 Dimensionless coefficient D2

n
10�3 —

x0 Characteristic length for rescaling
ffiffiffiffiffiffi
n
Dr

r
8.8 � 10�3 m

t0 Characteristic time for rescaling 1

Dr

1.3 � 10�2 s
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xdQ̂ ¼ � i
2
½dL̂þ dL̂T� � 4cdQ̂�D2k

2dQ̂; (23)

where dL̂ = dû # k. These equations can be written in a
compact form as, xv = Av, where v is defined as

v ¼

dûx

dûy

dQ̂xx

dQ̂xy

0
BBBBBBB@

1
CCCCCCCA

(24)

Note since Q is a symmetric and traceless tensor, one has
Qyy = Qxx and Qyx = Qxy. Without loss of generality, we consider a
wave vector along the x direction, k = (k,0), and the matrix A
becomes

A ¼

�k2 0 0 0

0 �k2 0 �iWk

�ik 0 �4c�D2k
2 0

0 �ik
2

0 �4c�D2k
2

0
BBBBBBBB@

1
CCCCCCCCA
: (25)

The only eigenvalue of matrix A that can have a positive real
part, is the one given in eqn (12). It shows that the system is
linearly unstable and that the perturbation fields grow
exponentially.

As evident from Fig. 1(a) and (b) in the main text, there is a
critical wave number kc below which Re x becomes positive,

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8c�W

2D2

r
: (26)

It assumes real values for W r �Wc = �0.8 for our chosen
parameters. Also, the most unstable wave number kmax, corres-
ponding to the mode with the largest growth rate, is obtained as

Both kc and kmax increase with the magnitude of W indicating
that smaller wavelengths become unstable for larger activity.

C. Velocity streamlines generated by a vortex street

In the context of incompressible irrotational flow in 2D, one
can express the velocity components as vx = qyc and uy = �qxc,
where the velocity stream function c satisfies the Laplace
equation =2c = 0. A simplest model for a irrotational vortex
in 2D is described by the velocity components vr = 0 and

vy ¼
K

jr� r0j
. Here, r0 is the center position of the vortex, and

K is a constant that determines the strength of the vortex. The
stream function associated with this flow field is given by c =
�K ln|r � r0|.

Now, consider an infinite row of such vortices arranged
along the y-axis with equal spacing a. The superimposed stream

function for this vortex street is c ¼ �K
P1
i¼1

ln jr� r0ij, where i

indicates the ith vortex in the row. This summation can be
written in closed form as99

c ¼ �1
2
K ln

1

2
cosh

2px
a
� cos

2py
a

� �� �
: (28)

To generate the streamlines depicted in Fig. 7(b), we super-
impose the stream functions of four vortex streets c oriented
along the y axis and with a distance of 2L. Adjacent vortex
streets should have an alternating sign of K indicating that they
rotate in opposite directions.

D. Vorticity analysis in trapped vortex state

To determine if a specific order in the vorticity pattern of the
trapped vortex state exists, such as ferro or anti-ferromagnetic
order similar to those reported in confined active systems,67,68

we focus on the vorticity in the regions between four inactivity
spots, which we call Regions of Interest (ROIs). In Fig. 15 we

show the mean value of vorticity within each ROI, ho(r)irAROI,
for two snapshots of a system in the trapped vortex state at

Fig. 15 Mean vorticity ho(r)irAROI within each ROI in the trapped vortex
state for two snapshots of the same system with L = 1.0 and d = 0.04 and
at times t = 200 (a) and t = 300 (b). Values are rescaled with maximum
value of ho(r)irAROI.

kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D2WðD2 þ 1Þ2ð8cðD2 � 1Þ �WÞ

p
� 8cD2ðD2 � 1Þ þ 2D2WÞ

	 

ðD2 � 1Þ2D2

vuut
: (27)

Fig. 16 Time course of vorticity for three neighboring ROIs in line.
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L = 1.0 and d = 0.04. The results indicate no specific order, also
when we average each ho(r)irAROI value over time. Furthermore,
correlating each ROI with its four nearest neighbors, we see a
tendency towards the same sign of vorticity but a regular
pattern does not exist.

The vorticity of a single vortex switches in time between
positive and negative. To examine whether the switching occurs
gradually or abruptly and also to assess the potential for
synchronized vorticity switches between neighboring ROIs, we
analyzed the time course of ho(r)irAROI for three ROIs in one
line. The results of this analysis, presented in Fig. 16, indicate
that the switching behavior of vorticity is gradual and no
synchronization is observed between adjacent ROIs.
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