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nt message passing for excited-
state nonadiabatic molecular dynamics†
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Philipp Marquetand,a Leticia González a and Julia Westermayr*ef

Excited-state molecular dynamics simulations are crucial for understanding processes like photosynthesis,

vision, and radiation damage. However, the computational complexity of quantum chemical calculations

restricts their scope. Machine learning offers a solution by delivering high-accuracy properties at lower

computational costs. We present SPAINN, an open-source Python software for ML-driven surface

hopping nonadiabatic molecular dynamics simulations. SPAINN combines the invariant and equivariant

neural network architectures of SCHNETPACK with SHARC for surface hopping dynamics. Its modular

design allows users to implement and adapt modules easily. We compare rotationally-invariant and

equivariant representations in fitting potential energy surfaces of multiple electronic states and

properties arising from the interaction of two electronic states. Simulations of the methyleneimmonium

cation and various alkenes demonstrate the superior performance of equivariant SPAINN models,

improving accuracy, generalization, and efficiency in both training and inference.
1 Introduction

Accurate non-adiabatic molecular dynamics (NAMD) simula-
tions play a vital role across various research domains in pho-
tophysics and photochemistry. These simulations delve into the
exploration of light-induced reactions, considering light as one
of the most prevalent energy sources on Earth. They facilitate
the exploration of diverse phenomena, including but not
limited to,1–3 vision,4,5 or radiation damage.6–8 All these
processes involve molecular reactions occurring aer excitation
to higher electronic states. By studying the subsequent nuclear
dynamics, it is possible to uncover the intricate relationships
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between molecular structure and photochemical properties,
paving the way towards the design of new photoactive mole-
cules,9 including photocatalysts,10 photosensitive drugs,11 or
photovoltaic materials.12–14 Despite the importance of these
NAMD simulations, the prohibitive costs associated with accu-
rate quantum chemistry calculations for photodynamics have
limited the scope of excited-state simulations. These restric-
tions apply specically to full quantum dynamics or semi-
classical dynamics simulations, conning them to short time
scales (usually several picoseconds) and small systems (typically
a few dozen atoms).9,15 Typical semi-classical photodynamics
simulations usually cover only a range of several picoseconds
for a few dozen of atoms.9,15

With the advent of machine learning (ML) in theoretical
chemistry, analytic representations of potential energy surfaces
(PESs) and related properties have been developed.16,17 These
approaches accelerate the simulations by decoupling the
computational costs of electronic structure calculations from
the dynamics simulations.16 While ground-state PES tting has
been pursued for over two decades and has enabled the simu-
lation of molecular dynamics of systems with many thousands
to millions of atoms with ab initio accuracy,18–20 the application
of ML approaches to excited-state processes has appeared much
later, with most developments occurring mainly in this
century.9,21–23 As a consequence, there is signicant methodo-
logical work to be done in accurately and meaningfully tting
the numerous excited-state PESs and associated properties.

Equivariant ML models have recently emerged for ground-
state properties and have achieved notable success in tting
thereof. These models have demonstrated improved accuracy
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4sc04164j&domain=pdf&date_stamp=2024-09-29
http://orcid.org/0009-0003-8136-8770
http://orcid.org/0000-0002-5968-2216
http://orcid.org/0000-0002-1012-4854
http://orcid.org/0000-0001-5112-794X
https://doi.org/10.1039/d4sc04164j
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D4SC04164J
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC015038


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/8
/2

02
5 

3:
05

:1
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and efficiency compared to traditional ML models by success-
fully capturing the underlying symmetries of molecules and
exploiting them to achieve accurate predictions even with
limited training data.24–28 However, to the best of our knowl-
edge, only one study has applied equivariant ML to describe
excited state properties. Gómez-Bombarelli and co-workers
developed a diabatic articial neural network using the equiv-
ariant PAINN29 model, achieving a six-fold speedup in photody-
namics simulations for azobenzene derivatives.30 Although
their model demonstrated robustness and transferability within
the chemical space of azobenzenes, it was not compared to the
performance of invariant approaches, such as PyRAI2MD31,32

and SCHNARC.33 The latter is based on SCHNET, the invariant
precursor to PAINN used in the aforementioned study.30 This
omission makes it unclear whether equivariant models have an
advantage over invariant models for excited states.

Nonetheless, It is expected that equivariant models will play
a crucial role in enabling robust training and accurate predic-
tion of vectorial properties,29 such as nonadiabatic couplings
(NACs) and transition dipoles in NAMD simulations. Unlike
PAINN, SCHNET is rotationally invariant and cannot directly
predict vectorial properties.29,34 Instead, SCHNET predicts
a virtual property, from which the equivariant property is
derived by taking its derivative with respect to nuclear coordi-
nates. Although SCHNARC can predict NACs using this
approach,33,35 PAINN's equivariant design would allow for direct
prediction of vectorial properties.

To address this gap, we developed SPAINN, an open-source
Python tool for ML-accelerated photodynamics simulations
that facilitates the use of both invariant and equivariant archi-
tectures, allowing for a direct comparison and evaluation of the
benets of equivariance. SPAINN integrates the NAMD program
SHARC 3.0 (Surface Hopping Including ARbitrary
Couplings)36,37 with the neural network potentials of SchNet-
Pack 2.0.38 (including SCHNET34 and PAINN modules). This
interface allows SPAINN to facilitate ML-based surface hopping
NAMD, leveraging SchNetPack 2.0's inherent strengths, such as
an improved data pipeline and support for both invariant
(SCHNET) and equivariant (PAINN) neural networks.38

We demonstrate the enhanced accuracy of SPAINN models
based on the PAINN compared to SCHNET architecture across
various aspects, including PESs, which encompass energies,
forces and NACs. Additionally, we highlight the improved
computational efficiency of SPAINN(PAINN) with respect to
SPAINN(SCHNET) models for both training and predictions. We
showcase the performance of SPAINN for a selection of alkenes
and the methyleneimmonium cation by accurately predicting
energies, forces, and NACs. These molecules are known to
undergo rotation around the double bond upon photoexcita-
tion. Furthermore, we illustrate the acceleration of NAMD
simulations for the methyleneimmonium cation using SPAINN
models.

2 SPAINN architecture

The general architecture of SPAINN is illustrated in Fig. 1. SPAINN
offers several improvements over its predecessor, SCHNARC,33
© 2024 The Author(s). Published by the Royal Society of Chemistry
most notably by supporting a rotationally equivariant repre-
sentation of molecules and materials using the PAINN repre-
sentation in addition to the translationally and rotationally
invariant SCHNET representation. Furthermore, the code is
entirely modular, similar to SchNetPack2.0,38 allowing for
straightforward addition and modication of modules for pre-
dicting excited-state properties. A detailed comparison between
SPAINN and SCHNARC is presented in Table S1.†

SPAINN integrates with SHARC36 for ML-driven NAMD simu-
lations. As an interface to SchNetPack 2.0, SPAINN provides
modules for:

� Conversion and generation (from SHARC output les) of
databases useable with SPAINN (cf. le column in Fig. 1 and ESI
section S1.1 and S1.2†),

� Data pre-processing (e.g., splitting, scaling and trans-
formation; cf. ESI section S1.3†),

� Prediction modules for electronic properties in multiple
electronic states (cf. middle column in Fig. 1), and

� Output modules enabling phase-free training of properties
arising from the coupling of two electronic states (cf. right
column in Fig. 1 and ESI section S1.4†).

Additionally, SPAINN facilitates communication between
SchNetPack 2.0 (ref. 38) and SHARC 3.0 (ref. 37) through the
spainn.calculator.SPaiNNulator class. This functionality allows
trained ML models to furnish quantum chemical properties
(calculate) or SHARC predictions (get_qm) for molecular struc-
tures. A comprehensive description of the data pipeline can be
found in the ESI (section S1†) and a code documentation is
available as “Read the Docs” page.39 In the following, we focus
on certain properties that are essential for ML but for
a comprehensive overview of the other parts of NAMD simula-
tions with SHARC see ref. 37 and 40.

To account for nonadiabatic transitions, SHARC uses the
Tully's fewest switches surface hopping method,41,42 which is
a mixed quantum-classical method that propagates nuclei
classically according to Newton's equation of motion on
different excited-state potentials, which are treated by means of
electronic structure theory. Nonadiabatic transitions between
different PESs are accounted for by so-called hops across
different PESs. These are determined stochastically based on
the magnitude of the NACs, which are referred to as Cij in the
following and are dened as

Cij ¼
D
JiðRÞ

��VRĤel

��JjðRÞ
E

Ej � Ei

with j. i; (1)

with Ji and Jj representing the electronic wave functions of
states i and j and their respective potential energies Ei and Ej,
whereas Ej > Ei. Fitting these couplings presents signicant
challenges arising from the intrinsic properties of NACs, char-
acterized by their lack of smoothness and arbitrary sign
variations.43–45 Specically, complications arise at conical
intersections, critical points in NAMD simulations where the
energy levels of electronic states i and j coincide.36,46However, as
electronic states become degenerate, NACs tend toward innity
(cf. eqn (1)), giving rise to singularities in their values. To
address this issue, SPAINN incorporates a smoothing process
Chem. Sci., 2024, 15, 15880–15890 | 15881
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Fig. 1 Overview of the variousmodules implemented in SPAINN: the asetools module creates andmanages datasets of Cartesian coordinates (R)
and atomic charges (Z) as well as energies (Ej), and forces (Fj) across different electronic states, along with their coupling properties (Cji), by
parsing SHARCoutput files (GenerateDB) or converting existing ASE databases (ConvertDB) into the required format (cf. Table S2†). Data handling
is performed by an adapted AtomsDataModule class from SchNetPack 2.0 (ref. 38) (SPAINN), which facilitates data splitting, scaling, and trans-
formation for multiple electronic states. The neural network potentials for training electronic properties of various electronic states utilize
standard SchNetPack 2.0 modules (e.g., representation and neural network potential modules), with SPAINN providing specialized prediction
modules (model) for atomistic invariant properties (Atomwise), forces as energy derivatives (Forces), non-adiabatic couplings (Nacs), and dipole
moments (Dipoles). SPAINN also includes loss functions, output modules (loss), for phase-free training of properties arising from interactions
between electronic states (Cji), using phase vectors (PhysPhaseLoss, PhysPhaseLossAtomistic) or ±1 multiplication (PhaseLoss, PhaseLossAto-
mistic) for on-the-fly phase correction during training. Additionally, SPAINN offers a calculator module (calculator.SPaiNNulator) for interfacing
neural network predictions (via SchNetPack) with NAMD simulations using SHARC.
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into its pipeline.45 This smoothing procedure involves scaling
the original NACs by the energy difference between the two
states involved in the coupling, denoted as Ej − Ei (j > i),
expressed as

~Cij = Cij$(Ej − Ei). (2)

These modied NACs, referred to as smoothed NACs (~Cij,
‘smooth_nacs’) are pre-computed and stored in the database.
This can be achieved by enabling the smooth_nacs=True option
when using the GenerateDB or ConvertDB classes of spainn.a-
setools to create a SPAINN database.

Moreover, training of NACs and other properties arising
from the interaction of two electronic states is further compli-
cated by the arbitrary phase inherent in the wavefunction,
resulting in these properties bearing an arbitrary sign.
Numerous strategies have been proposed to confront this
challenge, including phase correction of the data prior to
tting,47,48 and a phase-free training algorithm enabling the
training of raw data.33 While the former approach is oen
applicable only within limited conformational regions of
a molecule, the latter is constrained by the escalating training
complexity as the number of electronically excited states
increases. SPAINN incorporates two classes of phase-free loss
15882 | Chem. Sci., 2024, 15, 15880–15890
functions, namely PhaseLossAtomistic and PhysPhaseLossAto-
mistic, enhancing computational efficiency and simplicity
compared to the original approach of SCHNARC. The different
loss functions implemented are explained in detail in the ESI in
section S1.4.†

Besides NACs, energies, forces, and permanent and transi-
tion dipole moment vectors can be learned. Forces are treated
as derivatives of the potential energy surface with respect to
atomic positions and dipole moment vectors are learned using
the charge model according to ref. 49 and 50. All properties can
be trained simultaneously using a combined loss function:

L ¼
X
P

tP$L P (3)

where tP is a pre-dened parameter to weigh the different
properties during training with P referring to the set of trained
properties, such as energies (E), forces (F), dipole moments (m),
or NACs (C). L P is the individual loss of each property.

Ultimately, SPAINN models can be utilized for predicting
quantum chemical properties, either independently or within
a NAMD simulation using SHARC (spainn.calculator.SPaiNNu-
lator). It is important to note that while our models are trained
with smoothed NACs (~Cij), these are converted to classical NACs
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D4SC04164J


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/8
/2

02
5 

3:
05

:1
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
(Cij) for predictions using the NacCalculator class from spain-
n.interface.aseinterface. Specically, predictions of smoothed
NACs and energies for a given geometry are obtained, from
which the classical NACs are derived according to eqn (2). Since
the NacCalculator is employed in our ML-driven surface
hopping simulations (within the spainn.calculator.SPaiNNula-
tor), classical NACs are used during these dynamic runs.
Consequently, the prediction of photochemical properties, such
as rates and quantum yields, is expected to be as reliable as
surface hopping generally is for predicting these
properties.37,46,51
3 Datasets

Herein, we assess the quality of SPAINN predictions using two
classes of model systems: Firstly, we delve into the light-induced
rotation around a double bond across a series of alkenes:
ethene (C2H4), propene (C3H6), and butene (C4H8). To achieve
this, we created the XALKENEDB52 database at the complete active
space self-consistent eld (CASSCF) level of theory,53,54 speci-
cally averaging the three lowest singlet states targeting two
active electrons distributed over two active orbitals, denoted as
SA(3)-CASSCF(2,2). A total number of circa 6 k (for C2H4 and
C3H6 each) and 13 k (C4H8) reference calculations were per-
formed for the respective alkenes, from which the following ve
quantum chemical features are stored in the XALKENEDB data-
base: energies, forces, NACs, and dipole moment vectors
(comprising both permanent and transition dipole moment
vectors). Detailed information regarding the construction of the
XALKENEDB52 database is provided in the ESI (cf. section S2†).

As second showcase example, we studied the methyl-
eneimmonium cation (CH2NH2

+), which is the smallest
member of the protonated Schiff bases that has been used as
model systems to study the fundamental processes involved in
vision.55,56 To this end, we relied on the literature-known data-
base of CH2NH2

+ comprising 4 k data points at the multi-
reference conguration interaction singles and doubles (MR-
CISD) level of theory with an active space of four active elec-
trons in three active orbitals, namely MR-CISD(4,3).47 This data
has served as a good test bed for several developments33,45,47,57 as
it is characterized by ultrafast internal conversion aer excita-
tion to the second excited singlet state.
4 Results and discussion

To comprehensively assess the performance of SPAINN, we
investigated two distinct categories of organic model
compounds. These molecules share a common characteristic:
They show a torsional movement of groups around a C–C bond,
specically a double bond in their ground state, upon absorp-
tion of light. This phenomenon arises from the pp* nature of
the reached excited state: When a pp* state is populated by
light, the bond order of the molecules changes to one, con-
verting the double bond to a single s-bond. Consequently,
atoms or groups of atoms can freely rotate around this bond in
the electronic excited state, a freedom not available in the
© 2024 The Author(s). Published by the Royal Society of Chemistry
ground state. The quintessential example of such a photo-
chemical reaction is the cis/trans-isomerization.

Understanding these photochemical reactions computa-
tionally requires the accurate description of internal conversion
between electronic states, particularly accessing NACs at
regions of the conical intersections. These intersections are
characterized by energetic degeneracy between electronic
states, enabling ultrafast, non-radiative relaxation pathways.
Consequently, conical intersections serve as critical junctions
for light-induced reactions and processes that decide which
state is populated. Herein, we evaluate the predictive capability
of SPAINN in determining equivariant, vectorial properties,
namely dipole moments (mij) and NACs (Cij). The discussion
follows a conventional approach in understanding photo-
physical processes and reactions through computational
chemistry. Initially, we focus on static considerations, including
the prediction of absorption spectra (Franck–Condon region)
and properties of crossing geometries (region of conical inter-
sections). Subsequently, we showcase the application of SPAINN
predictions in conducting photodynamics simulations.
4.1 Training and computational efficiency of SPAINN

To demonstrate the effectiveness of SPAINN relative to SCHNARC

in accurately tting excited-state potentials and properties, we
trained SPAINN models utilizing both SCHNET and PAINN repre-
sentations. Notably, while SPAINN models utilizing SCHNET

representation demonstrate comparable performance to
SCHNARC models, it is important to highlight that the re-
implementation of the original SCHNARC code within SPAINN
confers increased versatility and computational efficiency.

SPAINN models are obtained for three alkene molecules,
namely ethene (C2H4), propene (C3H6), and butene (C4H8) as
compiled in the XALKENEDB52 and methyleneimmonium cation
(CH2NH2

+) as reported earlier by some of us.47 For the three
lowest singlet states of C2H4 and C3H6, we trained models on
energies (Ej) and forces (Fj, j = {0, 1, 2}) as well as the NACs (C01,
C02 and C12). Furthermore, we trained models on these nine
features and additional dipole moment vectors, namely transi-
tion dipoles (m01, m02, m12) and permanent dipoles (mj, j = {0, 1,
2}) for C4H8 and CH2NH2

+. Details on hyperparameters of the
models are compiled in the ESI (cf. section S3.1†).

Table 1 provides an overview of the mean average errors
(MAEs) and root mean squared errors (RMSEs) of SPAINN
models utilizing SCHNET (white cells) and PAINN (grey cells)
representations for tting these properties for the correspond-
ing four molecules. The errors indicate that the equivariant
PAINN representation leads to notable improvements, particu-
larly in predicting vectorial properties compared to SCHNET

models. Specically, while the MAEs of energies and forces
show only a modest average improvement of about 15% when
comparing SCHNET and PAINN models, the error in PAINN pre-
dicted NACs is on average 1.5 times smaller than that of SCHNET

models for the four model molecules. This observation is
reasonable considering that forces are not learned as vectorial
properties, but rather as the rst derivative of the energy.38

Furthermore, the fact that the equivariant model SPAINN
Chem. Sci., 2024, 15, 15880–15890 | 15883
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Table 1 Mean absolute errors (MAEs) and root mean squared errors
(RMSEs) of SPAINN models for the alkenes ethene, propene, and
butene, as well as the methyleneimmonium cation, employing either
PAINN (highlighted in gray) or SCHNET representations, respectively. The
models were trained on energies (Ej in eV), forces (Fj in eV Å−1), and
non-adiabatic coupling vectors (Cij) involving the three lowest singlet
states (S0, S1, and S2). A weight factor of 1.0 was used for energies,
forces, and non-adiabatic couplings to ensure a balanced consider-
ation of the target attributes and their trade-offs

MAE (RMSE)

C2H4 C3H6 C4H8 CH2NH2
+

Ej 0.004 (0.01) 0.054 (0.08) 0.002 (0.01) 0.055 (0.11)
0.003 (0.01) 0.065 (0.11) 0.011 (0.02) 0.091 (0.16)

Fj 0.020 (0.03) 0.291 (0.96) 0.014 (0.02) 0.280 (0.57)
0.022 (0.05) 0.409 (0.79) 0.062 (0.09) 0.407 (0.74)

Cij 0.024 (0.08) 0.021 (0.04) 0.004 (0.01) 0.179 (3.10)
0.034 (0.07) 0.031 (0.05) 0.024 (0.06) 0.233 (3.15)

mij — — 0.005 (0.02) 0.087 (0.19)
— — 0.023 (0.07) 0.125 (0.28)
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outperforms SCHNARC for all properties is reected in the MAE
error distributions as compiled in Fig. S4, S5, and S10† for each
model and property, respectively.

The computational efficiency of training SPAINN models and
predicting properties using these models is nally evaluated
and compared to SCHNARC models. Table 2 provides a compar-
ison of training times between SPAINN and SCHNARC models of
comparable size (cf. hyperparameters in section S3.1†), as well
as prediction times for both models on a central processing unit
(CPU).

The training times displayed in Table 2 demonstrate that
PAINN-based SPAINN models exhibit slightly greater efficiency
during training compared to SPAINN models employing SCHNET

representation (SCHNARC models). This is reected by training
times of 2.1 s per epoch for C2H4, C3H6, and CH2NH2

+ with
PAINN representation, compared to an average of 2.7 s when
training SCHNET-based SPAINN models. Conversely, for C4H8,
SCHNET-based model training is 0.2 s per epoch faster than
PAINN-based model training. However, despite this, PAINN
models converge in fewer steps, resulting in overall greater
efficiency (8.5 h) compared to training the corresponding
SCHNET-based model (9.1 h). This efficiency trend could
Table 2 Training and prediction times for SPAINN models employing SCH
training and per epoch indicated by the number of epochs in parenthesis
1000 structures 100 times. In none of the training procedures the number
earlier when the validation loss was not changing over 300 epochs. Trai
Xeon Gold 6134 CPU @ 3.20 GHz. Predictions were performed on an In

Molecules

Training times/s (# epochs)

SCHNET PAINN

C2H4 53 529 (19 881) 2.7 (1) 14 34
C3H6 36 277 (13 821) 2.6 (1) 19 12
C4H8 32 755 (7858) 4.2 (1) 30 70
CH2NH2

+ 6574 (2398) 2.7 (1) 5930

15884 | Chem. Sci., 2024, 15, 15880–15890
potentially be attributed to the increased data complexity in
C4H8 relative to the other three molecules, given that the data-
base comprises 13 k molecules, while the other databases
contain half or less than half of this size (4–6 k data points).

As shown in Table 2, despite the more complex representa-
tion employed by SPAINN, prediction times are nearly compa-
rable when predicting 100 structures. Timings are computed by
averaging predictions for 1000 structures over 100 iterations.
4.2 Franck–Condon region – prediction of electronic
absorption spectra

In computational investigations of photoinduced reactions and
processes, similar to experimental approaches, initial steps
oen involve characterizing the Franck–Condon region. This
entails understanding the energetic and electronic nature of
excited states within the framework of the Born–Oppenheimer
approximation. Typically, this is achieved by computing vertical
transition energies (Eabs) and oscillator strengths (f). These
parameters quantify the electronic absorption characteristics,
whereas the latter is obtained by calculating the energy differ-
ence between two electronic states (i and j) and the 2-norm of
the corresponding transition dipole moments (mij), as given in
eqn (4).

f ¼ 2

3
$
�
Ej � Ei

�
$kmijk22 with j. i (4)

Herein, we selected butene (C4H8) in both cis- and trans-
congurations, along with the methyleneimmonium cation
(CH2NH2

+) as our model systems. For predicting absorption
spectra we trained a SPAINN model on energies (Ej), forces (Fj),
NACs (Cij), and dipole moment vectors (mij), utilizing both
SCHNET and PAINN representations. The absorption spectra ob-
tained from quantum chemical reference calculations49,52 and
SPAINN predictions are displayed in Fig. 2, S9, and S12.†
Notably, including Fj and Cij in the training is crucial for
subsequent simulations of geometries at conical intersections
and photodynamics (see section 4.3 and 4.4).

For butene, we conducted reference calculations using SA(3)-
CASSCF(2,2)/cc-pVDZ for 451 cis- and trans-congurations.52

These congurations were generated by sampling geometries
with varied HC]CH dihedral angles and C]C bond lengths.
Specically, for the cis-conguration, we scanned 11 equidistant
dihedral angles between 0 to 20° and 41 equidistant alkene
NET or PAINN representation. The table reports the times for the whole
as well as the prediction times obtained by averaging the prediction of
of maximum epochs (100 k) was reached and the training was stopped
ning was performed on a Tesla-P100 GPU (16 GB RAM) using an Intel
tel(R) Core(TM) i5-12500

Prediction times/ms

SCHNET PAINN

1 (6791) 2.1 (1) 84.8 � 1.9 84.2 � 2.2
1 (9061) 2.1 (1) 85.1 � 1.8 85.6 � 2.1
9 (7039) 4.4 (1) 84.7 � 2.0 83.6 � 2.2

(2770) 2.1 (1) 85.8 � 7.6 85.5 � 4.5

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Simulated absorption spectra depicting S0 to S1 excitation in
both cis- (blue, a) and trans-butene (purple, a), alongside S0 to S1 (light
green, b) or S2 excitation (dark green, b) of CH2NH2

+. Reference
spectra, acquired for 451 geometries of cis- and trans-butene at SA(3)-
CASSCF(2,2)/cc-pVDZ52 (a) and for 20 k geometries of CH2NH2

+ at
MR-CISD(6,4)/aug-cc-pVDZ49 (b) level of theory, are represented as
solid, unfilled lines. The filled curves display the absorption spectra
derived from SPAINN models (PAINN representation) for the respective
structures. The residuals between the SPAINN- and reference calcu-
lated absorption spectra is shown in the bottom panels. Simulated/
predicted vertical excitation energies and corresponding oscillator
strengths were spectrally broadened using Gaussian functions with
a full width at half maximum of 0.1 eV.
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bond lengths between 2.0 and 3.0 Bohr. Similarly, for the trans-
conguration, the same C]C alkene bond lengths were scan-
ned with dihedrals ranging from 160 to 180°. The correspond-
ing absorption spectra are depicted in Fig. 2a as solid, unlled
curves. Additionally, we utilized a SPAINN model trained on 13 k
Wigner sampled structures of butene (cf. ESI section S2.1†) for
predicting Ej and mij of these 902 geometries. Fig. 2a illustrates
that the ML predicted spectra closely resemble the reference
calculations (see lled vs. unlled curves), capturing key spec-
tral features and trends between the cis- and trans-congura-
tions of butene. Specically, the maxima of the cis- and trans-
absorption bands align, while the absorption band of the cis-
congurations appears spectrally broader (by 0.14 eV full-width-
half-height) compared to the trans-congurations (ref. 0.08 eV
difference in full-width-half-height).

Fig. 2b depicts the SPAINN predicted absorption bands (lled
curves) of CH2NH2

+ for np* (S0-to-S1, dark green) and pp*

photoexcitation (S0-to-S2, bright green). The corresponding
absorption spectrum obtained for the same 20 000 structures
viaMR-CISD(6,4)/aug-cc-pVDZ is presented as a solid green line
in Fig. 2b, as previously reported by some of us.49 It is evident
that the SPAINN model of CH2NH2

+, accurately predicts
absorption bands that closely resemble the reference absorp-
tion spectrum.
4.3 Static approach – predicting properties across the
congurational space

Understanding and predicting excited-state chemistry hinges
on thorough knowledge of PESs. However, in polyatomic
molecules, PESs are complex high-dimensional functions,
posing challenges for characterization. One computational
approach – the static ansatz – involves identifying key structures
© 2024 The Author(s). Published by the Royal Society of Chemistry
on PESs and establishing reaction paths between them. Typi-
cally, this involves sampling various properties across a cong-
urational space to pinpoint important geometries, such as
minima and transition states based on potential energies and
frequencies, or crossing geometries based on NACs.

This process is computationally intensive, even for molec-
ular systems with few degrees of freedom and electronic states.
To streamline this search, ML predictions of properties at ab
initio quality can be utilized. ML models enable sampling of
diverse structures and properties within the boundaries of the
congurational space spanned by the training data. In our
study, we assess the performance of SPAINN in predicting
properties for the homologous series of alkenes in XALKENEDB,52

namely ethene (C2H4), propene (C3H6), and butene (C4H8), as
well as CH2NH2

+ with a particular focus on NACs. This
emphasis is due to the scarcity of electronic structure methods
providing couplings or Hessians and the inherent challenges in
tting NACs in ML approaches due to the phase problem and
singularities at conical intersections (cf. section 2).

Given the challenge of tting NACs, we further evaluate the
predictive capability of SPAINN models trained on XALKENEDB
and reference data for CH2NH2

+ (ref. 47) by conducting infer-
ence on unseen data covering two degrees of freedom. In the
rst dimension, we varied dihedral angles around the sp2

double bond, specically d(HC]CH) for C2H4, C3H6, and C4H8,
or d(HC]NH) for CH2NH2

+, within the range of 0 to 180°. In the
second dimension, we scanned the length of the respective sp2

double bond, ranging between 2.0 and 3.0 Bohr for the alkenes,
and between 2.4 and 4.4 Bohr for CH2NH2

+.
To assess the accuracy of the NAC predictions across the

geometries on the two-dimensional grids, we compare the
prediction errors obtained for SPAINNmodels employing SCHNET

or PAINN representations. First, we compute the logarithmic,
absolute error between each of the models and the quantum
chemical reference (DCij, cf. Fig. 3a–f and 4a–d). Subsequently,
we subtract the SPAINN(SCHNET) from the SPAINN(PAINN) predic-
tion errors, yielding DDCij = DCij (PAINN) − DCij (SCHNET) values
for every coupling (between states i and j) at every point on the
2D grid. The respective distribution of these error differences on
the 2D grid is shown for DDC01 of C2H4, C3H6, and C4H8 in
Fig. 3g–i, and for DDC12 and DDC01 of CH2NH2

+ in Fig. 4a and b.
The respective error-difference plots for all NACs, potential
energies, forces, or dipole moment vectors on the same grid are
compiled in Fig. S6–S8 and S11.†

In the difference plots (Fig. 3a–f) the colored areas indicate
prediction errors ranging from 1 (dark color) to 0.01 atomic
units (bright color) – an error magnitude acceptable for NAMD
simulations. Vice versa, gray color indicates prediction errors
above 1 atomic unit reaching up to 100 atomic units (black). In
the corresponding error difference plots, green highlights
regions where PAINN-based SPAINN models yield predictions
closer to the reference values compared to those based on
SCHNET, while pink indicates the opposite. We discuss the
respective results for the selected NACs of the alkenes and
CH2NH2

+ individually in the subsequent paragraphs.
4.3.1 Alkenes. The sampled 2D-grid for the molecules in

XALKENEDB covers the congurational space of interest, i.e., the
Chem. Sci., 2024, 15, 15880–15890 | 15885
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Fig. 3 Prediction errors DC01 (a–f): logarithm of the absolute differ-
ence between PAINN (a–c) or SCHNET-based SPAINN model predictions
and the quantum chemical reference values for nonadiabatic coupling
vectors between S0 and S1 (C01) for ethylene (a), propylene (b) and
butene (c) on a 2D grid along the C]C bond length and (HC]CH)
dihedral angles. The prediction errors represent the average values
obtained from two PAINN and two SCHNET models, which were trained
on two different data splits. Colored regions (a–c: green, d–f: pink)
indicate prediction errors lower than or equal to 1 atomic unit. Gray
regions indicate prediction errors above 1 atomic unit. Divergences in
prediction errors DDC01 (g–i): difference between the PAINN- and
SCHNET-based prediction errors, DDC01 = DC01 (PAINN) − DC01

(SCHNET). Green regions indicate better performance of the PAINN
models, while pink regions indicate better performance of the SCHNET

models. Unfilled symbols (a–i) highlight crossing geometries from
SHARC simulations (500 trajectories), where the average CH distance
aligns with the 2D grid average CH distance with a certainty of 5%.
Selected geometries are shown in the bottom panel, indicated by
black filled symbols in the contour plots.
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region around the S1/S0-conical intersection. Typically, conical
intersection-geometries with d(HC]CH) between 80 and 100°
and r(C]C) ranging from 2.5 to 2.8 Bohr are observed for
alkenes. This is supported by the hopping geometries found
from SHARC trajectories (#500) for the three alkenes. These are
indicated by black symbols in Fig. 3 and refer to geometries,
where the average C–H distance aligns with the one of the 2D
grid (z2.05 Bohr) with a certainty of 5%.

The error-difference plots for the alkenes show that PAINN-
based SPAINN models outperform their SCHNET-based counter-
parts in the relevant regions of chemical conguration space for
all three alkenes (cf. green vs. pink color in Fig. 3g–i). While the
training data encompasses d(HC]CH) values ranging from 0 to
180°, mirroring the 2D-grid reference points, the C]C double
bonds cover distances approximately from 2.25 to 2.80 Bohr in
15886 | Chem. Sci., 2024, 15, 15880–15890
the training set. Consequently, the models interpolate with
respect to angles but extrapolate along the distance axis.
Nevertheless, it is apparent that SPAINN models utilizing PAINN
representation exhibit superior generalization in regions typi-
cally associated with S1/S0 conical intersections. These inter-
sections, marked by black symbols in Fig. 3, are obtained from
SHARC simulations (note: while geometries may not align
precisely on the grid, corresponding C]C bond distances and
dihedrals are utilized for plotting).

Furthermore, the accuracy of PAINN predictions improves
with the increasing size of the alkenes (see white regions in
Fig. 3a–c). In contrast, SCHNET predictions show a growing
number of points with mean errors between 1 and 10 units as
the molecule size increases from C2H4 to C4H8 (see gray regions
in Fig. 3d–f). This trend can be explained by the increasing
degrees of freedom in larger molecules, which are more effec-
tively captured by the equivariant models.

In the error difference plots (cf. Fig. 3g–i) are certain regions,
where the SPAINN(SCHNET) models show a superior performance
compared to SPAINN(PAINN) models. For instance, in case of
C2H4, the SCHNET-based predictions of the nonadiabatic
couplings are more accurate with respect to the PAINN-based
predictions in a region between 2.2 and 2.7 Bohr at dihedral
angles between 80 and 100°. Nevertheless, both SPAINN(SCHNET)
and SPAINN(PAINN) exhibit in the regions, which are pink-
colored in Fig. 3g–i, mean average errors in the order of 0.01
to 0.1 units, which indicates that both models describe the
couplings in this region sufficiently accurately in terms of
NAMD simulations.

4.3.2 Methyleneimmonium cation. For CH2NH2
+, we

consider the NACs of S2 and S1 (C12) as well as S1 and S0 (C01),
since these couplings drive the ultrafast dynamics of the
molecule upon photoexcitation into S2. To better comprehend
the accuracy of the NACs in various regions of the PESs perti-
nent to NAMD, we plot the differences in the errors of these
NACs individually on the 2D-grid along the length of C]N bond
and rotation of the H-atom groups around it (cf. Fig. 4). These
coordinates were found to be pivotal for the conical intersec-
tions between the different states (cf. structures of optimized S2/
S1 and S1/S0 conical intersections in Fig. 4a and b).47

The rst conical intersection between the S2 and S1 state is
characterized by a pyramidalization and a bond distances
between 2.65 and 3.40 Bohr mainly, with most hopping geom-
etries located around 2.83 Bohr (see geometries and unlled
symbols in Fig. 4a). Hardly any rotation around the C]N bond
is visible in the conical intersection of states S2 and S1. SPAINN
outperforms SCHNARC in NAC accuracy in this region, which is
relevant for the S2/S1 conical intersection, which can be seen by
the region of green color Fig. 4a (bottom, le). For complete-
ness, we note that SPAINN is less accurate at about 90° dihedral
angle and large interatomic distances, a region hardly relevant
for the dynamics under investigation.47

The second conical intersection between the S1 and S0 state
is characterized by a rotation of the C]N bond and a dihedral
angle of up to 90°, see also Fig. S4† for a scan along the C–N
rotation and corresponding NAC values. Bond distances are
mainly at about 2.65 Bohr.47 As can be seen in Fig. 4b, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Prediction errors DC12 (a, c) and DC01 (b, d): logarithm of the
absolute difference between PAINN (a, b) or SCHNET-based SPAINN
model predictions (c, d) and the quantum chemical reference values
for nonadiabatic coupling vectors between S2 and S1 (C01) and S1 and
S0 (C01) for the methyleneimmonium cation (CH2NH2

+) on a 2D grid
along the C]N bond length and (HC]NH) dihedral angles. The
prediction errors represent the average values obtained from two
PAINN and two SCHNET models, which were trained on two different
data splits. Colored regions (a, b: green, c, d: pink) indicate prediction
errors lower than or equal to 1 atomic unit. Gray regions indicate
prediction errors above 1 atomic unit. Divergences in prediction errors
DDC12 (e) and DDC01: difference between the PAINN- and SCHNET-
based prediction errors, e.g., DDC12 = DC12 (PAINN) − DC12 (SCHNET).
Green regions indicate better performance of the PAINN models, while
pink regions indicate better performance of the SCHNET models.
Unfilled symbols (a–f) highlight crossing geometries from SHARC
simulations, where the average CH distance aligns with the 2D grid
average CH distance with a certainty of 5%. The white cross-symbols,
show the geometry features of the optimized conical intersection
geometry in S2 (a, c, e) and S1 (c, d, f). The respective geometries are
shown on top of subsets (e) and (f).

Fig. 5 Temporal evolution of population in the two lowest singlet
excited states upon photoexcitation into S1 of cis-butene (a) and the
three lowest singlet excited states of CH2NH2

+ upon excitation into S2
(b) as derived from SHARC simulations spanning 100 fs (with a time-
step of 0.5 fs). The solid lines represent outcomes from 100 SHARC
trajectories on SA(3)-CASSCF(2,2)/cc-pVDZ (a) or MR-CISD/aug-cc-
pVDZ level of theory, respectively.47,52 Dashed lines reflect results from
600 (a) or 3846 SHARC trajectories (b), incorporating non-adiabatic
couplings, energies, and forces predicted by a SPAINN model
leveraging the equivariant PAINN representation. The background color
is white in regions where SPAINN models yield reasonable results, as
determined by the total energy of the molecules at each time-step,
while other regions are shaded gray. Kinetic rate constants for
a sequential kinetics scheme were derived using KiMoPack58 and are
presented alongside the population plots. Bold numbers denote the
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accuracy between SPAINN and SCHNARC models for C01, i.e., the
NAC between the S0 and S1 states, seem to be balanced.
However, the region of interest with small bond distances is
mainly characterized by larger errors of SCHNET-based SPAINN
models. As the interatomic distance increases, SCHNET-based
SPAINN models exhibit greater accuracy compared to PAINN-
based counterparts. However, the relevance of NACs dimin-
ishes for the investigated dynamics. For completion, the error
difference in NACs between the S0 and S2 state as well as the
energies and dipoles is plotted in Fig. S11.† As evident from this
gure, the majority of regions are shaded green, indicating that
SPAINN models utilizing PAINN representation consistently
outperform their counterparts with SCHNET representation
across all examined NACs, energies, and dipoles and nearly all
areas of the investigated 2D PES.
© 2024 The Author(s). Published by the Royal Society of Chemistry
4.4 Dynamic approach – predicting ultrafast internal
conversion

Given the limitations of static photochemistry approaches in
potentially overlooking crucial geometries and pathways as well
as relaxation mechanisms, time scales and quantum yields, we
integrated SPAINN with SHARC 3.0.37 The latter forms the
methodological foundation for dynamic approaches employing
surface hopping NAMD. To showcase the performance of
SPAINN-assisted SHARC simulations, we employed the SPAINN
models of C4H8 and CH2NH2

+ to conduct photodynamics
simulations of the respective molecules. For the latter molecule,
this has been used to assess the accuracy of NAMD methods
earlier as the accurate description of its photodynamics that are
governed by ultrafast internal conversions between different
electronically excited states require accurate NACs.45,47,57

To execute ML-photodynamics we employed the SCHNET- and
PAINN-based SPAINN models of C4H8 and CH2NH2

+ trained on
energies (Ej), forces (Fj), NACs (Cij), and dipole moment vectors
(mij) as discussed in section 4.1 (cf. Table 1). Note that mij were
included and trained for completeness, although they remain
inactive in the photodynamics simulations under discussion.
Nevertheless, their potential application lies in the prediction of
electronic absorption spectra,49 thereby facilitating the selection
of initial conditions within the conventional framework of
NAMD simulations as discussed above (cf. section 4.2).

The results of the PAINN-based SPAINN predictions of the
photodynamics of C4H8 and CH2NH2

+ are summarized in form
of kinetic plots showing the population of the two (C4H8) or
three lowest singlet excited states (CH2NH2

+) in Fig. 5a and b,
respectively. The corresponding results obtained with SCHNET-
based SPAINN models are shown in Fig. S14.†
excited-state lifetimes as obtained from reference calculations, the ML
lifetimes are given in parenthesis.

Chem. Sci., 2024, 15, 15880–15890 | 15887
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For both molecules, it is evident from the population curves
in Fig. 5 that the SPAINN-driven SHARC simulations are able to
reproduce the ultrafast transitions between the different elec-
tronic states as obtained from SHARC reference calculations (cf.
computational details in section S2.4). This is reected in the
match between the dashed (SPAINN/SHARC simulations) and
the solid lines (electronic structure theory/SHARC simulations)
in the white shaded regions in Fig. 5.

For CH2NH2
+ (Fig. 5b), the transition from the rst excited

state (S1) to the ground state (S0) is marginally better captured
when comparing PAINN- and SCHNET-based SPAINN models
evaluated against quantum chemistry reference simulations.47

This is evidenced by the characteristic lifetime of S1 obtained
from a sequential kinetic model, which is 30 fs and 50 fs for
SCHNET- and PAINN-based SPAINN predictions, respectively,
whereas the reference value is 59 fs. Nevertheless, employing
both SCHNET and PAINN-based SPAINN models in SHARC simu-
lations yields reasonable photodynamics results, aligning with
previous analyses and ndings from related studies.45

In contrast, photodynamics simulations for C4H8 employing
PAINN-based SPAINN models outperform those using SCHNET-
based counterparts. However, both models exhibit reliability
limitations, constrained to a simulation time of approximately
60 fs, as indicated by the gray region in Fig. 5 and S14,† deter-
mined by the total energy of the molecules at each time-step of
the dynamics simulation. This is due to the fact that the C4H8

database was not optimized through active or online learning,
hence the simulations fail for both SCHNET- and PAINN-based
SPAINN models aer reaching a certain simulation time, corre-
sponding to long-tail events not well represented in the training
data. Only the PAINN-based SPAINN model accurately reproduces
the population kinetics of butene with respect to the reference,
yielding a lifetime of the initially excited S1 state of 49 fs,
consistent with reference calculations (48 fs), while SCHNET-
based models yield a lifetime of about 15 fs (Fig. S14a†). This
underscores the inuence of the more accurate excited-state
properties of PAINN compared to SCHNET-based SPAINN models.
5 Conclusions

This work introduces SPAINN, an open-source Python soware
for performing surface hopping molecular dynamics simula-
tions utilizing machine learning predicted energies, forces,
nonadiabatic couplings or dipole moment vectors. By the inte-
gration of the nonadiabatic molecular dynamics program
SHARC 3.0 with the neural network potentials provided by
SchNetPack 2.0, SPAINN provides a exible and modular tool for
training and predicting excited state properties involving
multiple electronic (singlet) states using rotationally-invariant
(SCHNET) or -equivariant (PAINN) representation of molecules.
Moreover, its modular architecture allows for straightforward
adaption of modules and the development of new ones. The
method is accessible on GitHub59 and is accompanied by
a comprehensive documentation39 including tutorials, which
facilitate its integration into research. SPAINN incorporates three
core modules to (i) generate databases or convert existing
15888 | Chem. Sci., 2024, 15, 15880–15890
databases into the SPAINN database format, and to interface (ii)
SchNetPack and (iii) SHARC.

The performance and capability of SPAINN is demonstrated
using simulations of the methyleneimmonium cation and
a series of alkenes. The results show improved accuracy and
comparable computational efficiency to previous methods
(SCHNARC), particularly in tting non-adiabatic couplings, ener-
gies, and forces of multiple electronic excited singlet states.
Overall, we show that the usage of the equivariant representa-
tion, improves the data efficiency in training and inference as
well as the generalization of the respective models. We believe
that SPAINN is promising for the study of various photophysical
and photochemical phenomena and the comprehensive docu-
mentation and tutorials available with this method facilitate the
development of new interatomic potentials for molecules in
their excited states.
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