RSC Advances

View Article Online

View Journal | View Issue

PAPER

Check for updates

Cite this: RSC Adv., 2024, 14, 7740

Capture of mechanically interlocked molecules by rhodium-mediated terminal alkyne dimerisation[†]

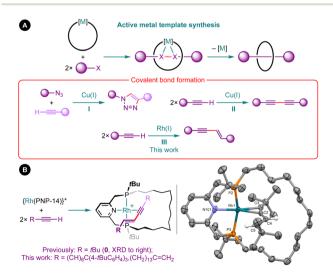
Thomas M. Hood, 🕑 * Samantha Lau 🕑 and Adrian B. Chaplin 🕑 *

The transition metal-mediated dimerisation of terminal alkynes is an attractive and atom-economic method for preparing conjugated 1,3-enynes. Using a phosphine-based macrocyclic pincer ligand, we demonstrate how this transformation can be extended to the synthesis of novel, hydrocarbon-based interlocked molecules: a rotaxane by 'active' metal template synthesis and a catenane by sequential 'active' and 'passive' metal template procedures.

Received 22nd January 2024 Accepted 7th February 2024 DOI: 10.1039/d4ra00566j

rsc.li/rsc-advances

Introduction


Coordination chemistry is a prominent feature of contemporary methods for constructing mechanically interlocked molecules, such as rotaxanes and catenanes.¹ Active metal template synthesis has emerged as a particularly effective strategy, exploiting a metal to position and covalently fuse the precursor fragments together in an entangled arrangement (Fig. 1A).² Whilst this strategy has been successfully implemented using a variety of metal-mediated transformations, the overwhelming majority of examples are based on coppermediated alkyne-azide cycloaddition reactions (I) or Glaser couplings (II) in combination with bidentate nitrogen-based macrocycles.^{2,3}

As part of our work exploring the organometallic chemistry of terminal alkyne dimerisation reactions⁴ promoted by macrocyclic pincer complexes (Fig. 1B),^{5,6} we speculated that this transformation could be adapted into an active metal template procedure for the preparation of mechanically interlocked 1,3-enynes (III). We herein describe the preparation of hydrocarbon-based rotaxane 1 and catenane 2 derived from the phosphine-based macrocyclic pincer ligand PNP-14 (Fig. 2).⁷ Despite the widespread use of phosphine ligands in organotransition metal chemistry and homogenous catalysis,⁸ this constitutes the first application in active metal template synthesis of mechanically interlocked molecules.

Results and discussion

Using a protocol developed previously for rhodium(i) *E*-enyne complex **0** (Fig. 1B),^{6,9} rotaxanate **3** and pseudo-rotaxanate **4** were obtained in quantitative spectroscopic yield upon

treatment of $[Rh(PNP-14)(\eta^2-COD)]^+$ (COD = cyclooctadiene; δ_{31P} 57.4/45.9, ${}^2J_{PP} = 312$ Hz, ${}^1J_{RhP} \sim 135$ Hz) with the novel bulky aryl stoppered terminal alkyne HC=C(CH₂)₆C(4-*t*BuC₆H₄)₃ and methylene-spaced ene-yne HC=C(CH₂)₁₃CH=CH₂, respectively, in the weakly coordinating solvent 1,2-difluorobenzene (DFB) at room temperature (Fig. 2).¹⁰ The new rhodium derivatives present ¹H NMR resonances at δ 6.95/5.94 (3) and 7.01/ 5.98 (4) with ${}^3J_{HH}$ coupling constants of ~15 Hz that are diagnostic for coordinated *E*-enynes, whilst the *C*₁ symmetry of the molecules is manifested in the observation of inequivalent ${}^{31}P$ NMR resonances at δ 58.6/54.9 (3) and 56.9/53.1 (4) that are coupled to 103 Rh (${}^1J_{RhP}$ = 128 Hz) and display *trans* ${}^2J_{PP}$ coupling constants of ~393 Hz.¹¹ Subsequent treatment of 4 with

Fig. 1 (A) Active metal template synthesis of interlocked molecules and (B) terminal alkyne dimerisation reactions promoted by macrocyclic rhodium(I) PNP pincer complexes. Solid-state structure of complex **0** shown with thermal ellipsoids drawn at 30% probability and most H-atoms omitted.

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. E-mail: tom.m.hood@warwick.ac.uk; a.b.chaplin@warwick.ac.uk

[†] Electronic supplementary information (ESI) available: Characterisation data and NMR stack plots. CCDC 2063081. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d4ra00566j

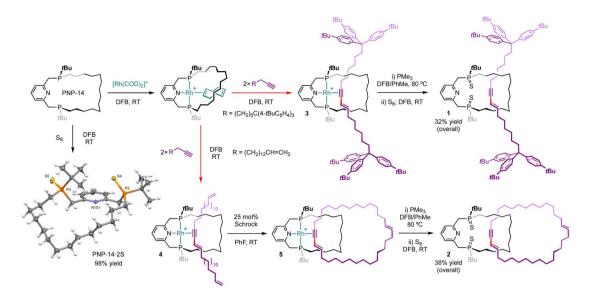


Fig. 2 Synthesis of rotaxane 1 and catenane 2. $[B(3,5-(CF_3)_2C_6H_3)_4]^-$ counterions omitted for clarity and solid-state structure of PNP-14·2S shown with thermal ellipsoids drawn at 50% probability.

25 mol% Schrock's catalyst (CAS: 139220-25-0) at room temperature enabled capture of catenate 5 by ring closing olefin metathesis, with complete conversion confirmed after monitoring the reaction *in situ* for 5 days at room temperature using ¹H and ³¹P{¹H} NMR spectroscopy and (tandem) ESI-MS.

Removal of rhodium from 3 and 5 was achieved by heating with excess PMe₃ (20 equiv.) to give the corresponding rotaxane (1', δ_{31P} 2.42/0.92) and catenane (2', δ_{31P} 1.46/0.78), alongside $[Rh(PMe_3)_4]^+$ as the rhodium-containing byproduct.12 To facilitate isolation, 1' and 2' were converted into the corresponding phosphine sulphides 1 and 2 by treatment with S_8 which were thereafter obtained in 32% and 38% overall yield (from PNP-14) following purification on silica. Formation of the new interlocked molecules was corroborated by analysis of isolated materials using NMR spectroscopy and ESI-MS. Threading of the envne breaks the C_2 symmetry of the macrocycle and this desymmetrisation is evident in both the ¹H and ³¹P{¹H} NMR spectra of 1 (δ_{31P} 63.71/63.65) and 2 (δ_{31P} 63.6/63.5), alongside perturbation of the macrocycle resonances relative to independently isolated PNP-14·2S (δ_{31P} 64.7, NMR stack plots provided in the ESI[†]). The interlocked nature of 1 and 2 was also substantiated by high resolution tandem mass spectrometry experiments,¹³ whereby selective fragmentation of the $[M + H]^+$ ions (1, 1584.1321, calcd 1584.1339 m/z; 2, 982.7566, calcd 982.7549 m/z) gave the $[M + H]^+$ ion of PNP-14 · 2S (542.3154/542.3159, calcd 542.3167 m/z) as the major species in both cases.

Conclusions

These results serve as proof of principle for the application of transition mediated terminal alkyne dimerisation reactions in the synthesis of mechanically interlocked molecules, whilst also demonstrating how phosphine-based functional groups can be integrated into the structure of these intriguing molecules.

Experimental section

All manipulations were performed under an atmosphere of argon using Schlenk and glove box techniques unless otherwise stated. Glassware was oven dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C in vacuo overnight. Fluorobenzene and 1,2difluorobenzene (DFB) were pre-dried over Al₂O₃, distilled from calcium hydride and dried twice over 3 Å molecular sieves.10 CD₂Cl₂ was freeze-pump-thaw degassed and dried over 3 Å molecular sieves. THF and dioxane were distilled from sodium/ benzophenone and stored over 3 Å molecular sieves. DMSO was freeze-pump-thaw degassed and dried up to five times and finally stored over 3 Å molecular sieves. SiMe₄ was distilled from liquid Na/K alloy and stored over a potassium mirror. Other anhydrous solvents were purchased from Acros Organics or Sigma-Aldrich, freeze-pump-thaw degassed and stored over 3 Å molecular sieves. PMe3 in toluene and 1,6-dibromohexane were freezepump-thawed degassed and dried twice over 3 Å molecular sieves before use. Schrock's catalyst (CAS: 139220-25-0) was recrystallised from SiMe₄ at -30 °C before use. nBuLi was titrated before use.¹⁴ Br(CH₂)₆C(4-tBuC₆H₄)₃,¹⁵ 15-bromo-1-pentadecene,¹⁶ [Rh(COD)₂] [BAr^F₄],¹⁷ and PNP-14⁷ were synthesized according to published procedures. All other reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers under argon at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. NMR spectra in DFB were recorded using an internal capillary of C6D6. High resolution (HR) ESI-MS and MS/MS were recorded on Bruker Maxis Plus instrument. Microanalysis was performed at the London Metropolitan University by Stephen Boyer.

Preparation of HC=C(CH₂)₆C(4-*t*BuC₆H₄)₃

A suspension of $Br(CH_2)_6C(4-tBuC_6H_4)_3$ (290 mg, 504 µmol) in DMSO (5 mL) was treated dropwise with THF until

homogeneous. A suspension of $HC\equiv CLi \cdot H_2N(CH_2)_2NH_2$ (51.0 mg, 554 µmol) in THF (5 mL) was then added and the resulting suspension heated at 130 °C for 48 h. The reaction was quenched by addition of H_2O (2 mL) and the product extracted into CH_2Cl_2 (3 × 5 mL). The combined organic extracts were washed with brine (2 × 10 mL), dried over MgSO₄ and then concentrated *in vacuo* to give an oily white solid. Purification using a silica plug (hexane \rightarrow 1 : 1 hexane : CH_2Cl_2) afforded the product as a white solid. Yield: 220 mg (422 µmol, 84%; mp. 142–143 °C).

¹H NMR (500 MHz, CDCl₃): δ 7.24 (d, ³*J*_{HH} = 8.4, 6H, *m*-Ar), 7.14 (d, ³*J*_{HH} = 8.4, 6H, *o*-Ar), 2.48–2.52 (m, 2H, Ar₃CC<u>H₂</u>), 2.13 (td, ³*J*_{HH} = 7.1, ⁴*J*_{HH} = 2.6, 2H, C<u>H₂</u>C≡CH), 1.91 (t, ⁴*J*_{HH} = 2.6, 1H, C≡CH), 1.44 (pent, ³*J*_{HH} = 7.1, 2H, C<u>H₂</u>CH₂C≡CH), 1.25– 1.36 (m, 4H, 2×CH₂), 1.30 (s, 27H, *t*Bu), 1.05–1.12 (m, 2H, CH₂).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 148.2 (s, *t*Bu<u>C</u>), 145.0 (s, *i*-Ar), 129.0 (s, *o*-Ar), 124.5 (s, *m*-Ar), 84.9 (s, <u>C</u>=CH), 68.2 (s, C=<u>C</u>H), 55.5, (s, Ar₃<u>C</u>), 40.7 (s, Ar₃C<u>C</u>H₂), 34.4 (s, *t*Bu{C}), 31.5 (s, *t*Bu{CH₃}), 30.1 (s, CH₂), 28.8 (s, CH₂), 28.7 (s, <u>C</u>H₂CH₂-C=CH), 25.7 (s, CH₂), 18.5 (s, CH₂C=CH).

HR ESI-MS (positive ion 4 kV): 559.3684 ($[M + K]^+$, calcd 559.3701) m/z.

Preparation of HC=C(CH₂)₁₃CH=CH₂

A suspension of 15-bromo-1-pentadecene (1.22 g, 4.24 mmol) and HC=CLi·H₂N(CH₂)₂NH₂ (0.41 g, 4.45 mmol) in 1,4dioxane-DMSO (10:5 mL) was stirred at 120 °C for 16 h. The reaction was quenched by addition of H₂O (15 mL) and product extracted into hexane (3 × 15 mL). The combined organic extracts were washed with brine (2 × 10 mL), dried over MgSO₄ and then concentrated *in vacuo* to give an off-white oily wax. The analytically pure compound was obtained as a colourless wax by repeated column chromatography (silica, hexane; $R_{\rm f} = 0.37$). Yield: 244 mg (1.04 mmol, 25%; mp. 43–48 °C).

¹H NMR (500 MHz, CDCl₃): δ 5.81 (ddt, ³*J*_{HH} = 16.9, 10.2, 6.7, 1H, H₂C=C<u>H</u>), 4.99 (ddt, ³*J*_{HH} = 16.9, ²*J*_{HH} = 2.2, ⁴*J*_{HH} = 1.6, 1H, <u>H</u>₂C=CH), 4.93 (ddt, ³*J*_{HH} = 10.2, ²*J*_{HH} = 2.2, ⁴*J*_{HH} = 1.3, 1H, <u>H</u>₂C=CH), 2.18 (td, ³*J*_{HH} = 7.1, ⁴*J*_{HH} = 2.6, 2H, C<u>H</u>₂C≡CH), 2.01–2.07 (m, 2H, H₂C=CHC<u>H</u>₂), 1.94 (t, ⁴*J*_{HH} = 2.6, 1H, C≡C<u>H</u>), 1.52 (pent, ³*J*_{HH} = 7.6, 2H, C<u>H</u>₂CE≡CH), 1.33–1.43 (m, 4H, 2×CH₂), 1.22–1.33 (m, 16H, 8×CH₂).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 139.4 (s, H₂C=<u>C</u>H), 114.2 (s, H₂<u>C</u>=CH), 85.0 (s, <u>C</u>CH), 68.2 (s, C=<u>C</u>H), 34.0 (s, CH₂= CH<u>C</u>H₂), 29.80 (s, 2×CH₂), 29.76 (s, 2×CH₂), 29.7 (s, 2×CH₂), 29.31 (s, CH₂), 29.27 (s, CH₂), 29.1 (s, CH₂), 28.9 (s, CH₂), 28.7 (s, CH₂), 18.6 (s, <u>C</u>H₂C=CH).

Anal. calcd for $C_{17}H_{30}$ (234.43 g mol⁻¹): C, 87.10; H, 12.90; N, 0.00. Found: C, 86.99; H, 13.02; N, 0.00.

Preparation of rotaxane 1

A solution of $[Rh(PNP-14)(\eta^2-COD)][BAr^F_4]$ (8.3 µmol, generated *in situ* from $[Rh(COD)_2][BAr^F_4]$ and PNP-14 as previously described⁹) in DFB (0.5 mL) was treated with HC=C(CH₂)₆C(4-*t*BuC₆H₄)₃ (9.5 mg, 18.2 µmol) and stirred at RT for 5 min. Volatiles were removed *in vacuo* to afford 3 as an orange foam upon removal of volatiles. Crude 3 was then dissolved in DFB

(330 µL) and treated with a solution of PMe₃ in toluene (170 µL, 1 M, 170 µmol) and the resulting solution heated at 80 °C for 5 days. Volatiles were removed *in vacuo* and the residue extracted with hexane. The resulting orange oil was treated with S₈ (12.6 mg, 49.1 µmol) in DFB (0.5 mL) and stirred at RT for 16 h. Finally, removal of the volatiles *in vacuo* and purification by preparative TLC (silica; 9:1 CH₂Cl₂: MeOH; $R_f = 0.4$ –0.5) afforded the product as a white solid. Yield: 4.2 mg (2.7 µmol, 32%; mp 112 °C).

Data for 3

¹H NMR (500 MHz, CD₂Cl₂, selected data): δ 7.76 (t, ³*J*_{HH} = 7.9, 1H, *p*-py), 7.33 (d, ³*J*_{HH} = 7.9, 1H, *m*-py), 7.31 (d, ³*J*_{HH} = 7.9, 1H, *m*-py), 6.95 (dt, ³*J*_{HH} = 14.6, ³*J*_{HH} = 6.9, 1H, C=CCH=C<u>H</u>), 5.94 (d, ³*J*_{HH} = 15.3, 1H, C=C<u>C</u>H=CH), 1.31 (s, 12H, *t*BuC), 1.30 (s, 38H, *t*BuC), 0.93 (d, ³*J*_{PH} = 12.3, 9H, *Pt*Bu), 0.89 (d, ³*J*_{PH} = 12.3, 9H, *Pt*Bu).

³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ 58.6 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 129, 1P), 54.9 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 127, 1P).

¹H NMR (400 MHz, DFB, selected data): δ 7.55 (t, ³*J*_{HH} = 8.0, 1H, *p*-py), 5.99 (d, ³*J*_{HH} = 15.0, 1H, C=C<u>H</u>=CH), 1.12–1.17 (m, 54H, *t*BuC), 0.82–0.89 (m, 18H, P*t*Bu).

³¹P{¹H} NMR (162 MHz, DFB): δ 56.1 (dd, ²*J*_{PP} = 393, ¹*J*_{RhP} = 129, 1P), 52.5 (dd, ²*J*_{PP} = 393, ¹*J*_{RhP} = 127, 1P).

Data for 1'

³¹P{¹H} NMR (162 MHz, PhF, selected data): δ 2.42 (s, 1P), 0.92 (s, 1P).

Data for 1

¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, ³J_{HH} = 7.6, 1H, *m*-py), 7.41 (t, ³J_{HH} = 7.6, 1H, *p*-py), 7.24 (d, ³J_{HH} = 8.6, 6H, *m*-Ar), 7.23 (d, ³J_{HH} = 8.6, 6H, *m*-Ar), 7.13 (d, ³J_{HH} = 8.3, 12H, 2×*o*-Ar), 7.12 (obscured, 1H, *m*-py), 6.17 (dt, ²J_{HH} = 16.0, ³J_{HH} = 6.9, 1H, C≡CCH=CH), 5.95 (dt, ²J_{HH} = 16.0, ⁴J_{HH} = 2.0, 1H, C≡CC<u>H</u>=CH), 3.84 (app t, ²J_{PH} = ²J_{HH} = 13.9, 1H, pyC<u>H</u>₂), 3.60 (dd, ²J_{HH} = 14.1, ²J_{PH} = 11.1, 1H, pyC<u>H</u>₂), 3.37 (app t, ²J_{PH} = ²J_{HH} = 13.7, 1H, pyC<u>H</u>₂), 3.35 (dd, ²J_{HH} = 13.8, ²J_{PH} = 11.3, 1H, pyC<u>H</u>₂), 2.45–2.53 (m, 4H, 2×Ar₃-CC<u>H</u>₂), 2.18–2.28 (m, 1H, C<u>H</u>₂C≡CCH=CH), 2.02–2.16 (m, 4H, C≡CCH=CHC<u>H</u>₂ [δ 2.11, 2H] + PCH₂ [δ 2.08, 1H] + C<u>H</u>₂-C≡CCH=CH [δ 2.07, 1H]), 1.80–1.94 (m, 5H, CH₂), 1.11–1.68 (m, 34H, CH₂), 1.292 (s, 27H, *t*BuC), 1.290 (s, 27H, *t*BuC), 1.24 (d, ³J_{PH} = 15.6, 18H, 2×PtBu), 0.98–1.11 (m, 4H, 2×Ar₃CCH₂C<u>H</u>₂).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 153.6 (dd, ²J_{PC} = 6, ⁴J_{PC} = 1, *o*-py), 153.5 (d, ²J_{PC} = 7, *o*-py), 148.2, (s, *t*BuC), 148.1 (s, *t*BuC), 145.03 (s, *i*-Ar), 144.97 (s, *i*-Ar), 143.4 (s, C=CH=CH), 135.6 (s, *p*-py), 128.96 (s, *o*-Ar), 128.95 (s, *o*-Ar), 124.53 (s, *m*-Ar), 124.50 (s, *m*-Ar), 123.4 (br, *m*-py), 123.3 (br, *m*-py), 113.3 (s, C=CH=CH), 92.3 (s, C=CCH=CH), 82.1 (s, C=CH=CH), 55.43 (s, Ar₃C), 55.39 (s, Ar₃C), 40.83 (s, Ar₃CCH₂), 40.80 (s, Ar₃CCH₂), 37.1 (d, ¹J_{PC} = 42, pyCH₂), 36.3 (d, ¹J_{PC} = 41, pyCH₂), 35.3 (d, ¹J_{PC} = 47, PtBu{C}), 35.2 (d, ¹J_{PC} = 47, PtBu{C}), 34.4 (s, 2×tBuC{C}), 33.3 (s, C=CCH=CHCH₂), 31.6 (s, 2×tBuC{CH₃}), 31.2 (d, ²J_{PC} = 15, 2×CH₂), 30.8 (s, CH₂), 30.6 (s, CH₂), 28.8–30.0 (m, 12×CH₂), 28.2 (d, ¹J_{PC} = 48, PCH₂), 27.7 (d, ¹J_{PC} = 47, PCH₂), 26.1 (s,

 $2 \times Ar_3CCH_2CH_2$, 25.8 (s, $2 \times PtBu\{CH_3\}$), 23.8 (d, ${}^{3}J_{PC} = 4$, CH₂), 23.2 (d, ${}^{3}J_{PC} = 4$, CH₂), 21.0 (s, $CH_2C\equiv CCH=CH$).

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 63.71 (s, 1P), 63.65 (s, 1P). HR ESI-MS (positive ion, 4 kV): 1584.1321 ([M + H]⁺, calcd 1584.1339) *m/z*.

HR ESI-MS/MS (positive ion; 120 eV (a) +1584): 542.3154 ([PNP-14 \cdot 2S + H]⁺, calcd 542.3167) *m/z*.

Preparation of catenane 2

A solution of $[Rh(PNP-14)(\eta^2-COD)][BAr_4^F]$ (10.7 µmol, generated in situ from $[Rh(COD)_2][BAr^F_4]$ and PNP-14 as previously described⁹) in DFB (0.5 mL) was treated with HC \equiv C(CH₂)₁₃-CH=CH₂ (194 µL, 116 mM, 22.5 µmol) and stirred at RT for 5 min. Volatiles were removed in vacuo to afford 4 as an orange oil. Crude 4 was dissolved in fluorobenzene (10 mL) and treated with 25 mol% Schrock's catalyst in 5 mol% portions (0.4 mg, 0.52 µmol) daily over 5 days and periodically assayed by ESI-MS. Volatiles were removed in vacuo to afford 5 as an orange oil. Crude 5 was then dissolved in DFB (300 µL) and treated with a solution of PMe₃ in toluene (200 µL, 1 M, 200 µmol) and the resulting solution heated at 80 °C for 5 days. Volatiles were removed in vacuo and the residue extracted with hexane. The resulting orange oil was treated with S_8 (12.6 mg, 49.1 μ mol) in DFB (0.5 mL) and stirred at RT for 16 h. Finally, removal of the volatiles in vacuo and purification by preparative TLC (silica; 9: 1 CH₂Cl₂: MeOH; $R_f = 0.4-0.5$) afforded the product as a colourless oil. Yield: 3.7 mg (3.8 µmol, 38%).

Data for 4

¹H NMR (500 MHz, CD₂Cl₂, selected data): δ 7.77 (t, ³*J*_{HH} = 7.8, 1H, *p*-py), 7.36 (overlapping d, ³*J*_{HH} = 7.9, 2H, *m*-py), 7.01 (dt, ³*J*_{HH} = 14.6, ³*J*_{HH} = 6.9, 1H, C=CCH=C<u>H</u>), 5.98 (d, ³*J*_{HH} = 15.3, 1H, C=CC<u>H</u>=CH), 5.82 (ddt, ³*J*_{HH} = 16.8, ³*J*_{HH} = 9.8, ³*J*_{HH} = 6.7, 2H, C<u>H</u>=CH₂), 4.98 (d, *J*_{HH} = 17, 2H, CH=C<u>H₂), 4.91 (d, *J*_{HH} = 10, 2H, CH=C<u>H₂), 3.37-3.51 (m, 4H, pyCH₂), 0.97 (d, ³*J*_{PH} = 12.3, 9H, *t*Bu), 0.91 (d, ³*J*_{PH} = 12.2, 9H, *t*Bu).</u></u>

³¹P{¹H} NMR (121 MHz, CD₂Cl₂): δ 56.9 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 129, 1P), 53.1 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 127, 1P).

¹H NMR (400 MHz, DFB, selected data): δ 8.09–8.15 (m, 8H, Ar^F), 7.53 (obscured t, ³*J*_{HH} = 8.2, p-py), 7.49 (br, 4H, Ar^F), 6.04 (d, ³*J*_{HH} = 15.4, 1H, C=C<u>H</u>=CH), 5.82 (dt, ³*J*_{HH} = 15.4, ³*J*_{HH} = 8.3, C<u>H</u>=CH₂), 4.80–4.98 (m, 2H, CH=C<u>H</u>₂), 0.87 (app t, *J*_{PH} = 12.8, 18H, *t*Bu).

³¹P{¹H} NMR (121 MHz, DFB): δ 56.5 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 128, 1P), 52.1 (dd, ²*J*_{PP} = 394, ¹*J*_{RhP} = 127, 1P).

HR ESI-MS (positive ion, 4 kV): 1048.7587, ($[M]^+$, calcd 1048.7398) m/z.

Data for 5

¹H NMR (400 MHz, CD₂Cl₂, selected data): δ 7.79 (t, ³*J*_{HH} = 8.3, 1H, *p*-py), 7.36 (br d, ³*J*_{HH} = 7.3, 2H, *m*-py), 7.03 (br, 1H, C=CCH=C<u>H</u>), 6.00 (d, ³*J*_{HH} = 16, 1H, C=CC<u>H</u>=CH), 5.39 (br, 2H, CH=CH), 3.43 (br, 4H, pyC<u>H₂</u>), 0.98 (d, ³*J*_{PH} = 11, 9H, PtBu), 0.92 (d, ³*J*_{PH} = 12, 9H, PtBu).

³¹P{¹H} NMR (121 MHz, CD₂Cl₂): δ 56.7 (d, ²*J*_{PP} = 394, ¹*J*_{RhP} = 129, 1P), 53.3 (d, ²*J*_{PP} = 393, ¹*J*_{RhP} = 127, 1P).

¹H NMR (400 MHz, DFB, selected data): δ 8.09–8.15 (m, 8H, Ar^F), 7.49 (br, 4H, Ar^F), 6.01 (br d, ${}^{3}J_{HH} = 14.4$, 1H, C \equiv CC<u>H</u> \equiv CH), 5.35 (br, 2H, CH=CH), 3.30 (br, 4H, pyC<u>H</u>₂), 0.88 (br d, ${}^{3}J_{PH} = 12$, 9H, *t*Bu), 0.83 (br d, ${}^{3}J_{PH} = 10$, 9H, *t*Bu).

³¹P{¹H} NMR (121 MHz, DFB): δ 56.6 (d, ²*J*_{PP} = 394, ¹*J*_{RhP} = 129, 1P), 52.5 (d, ²*J*_{PP} = 393, ¹*J*_{RhP} = 127, 1P).

HR ESI-MS (positive ion, 4 kV): 1020.7092, ($[M]^+$, calcd 1020.7085) *m*/*z*.

HR ESI-MS2 (positive ion, 70 eV (a) +1020): 578.2543 ([{Rh(PNP-14)}-H₂]⁺, calcd 578.2546) m/z.

Data for 2'

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (162 MHz, DFB, selected data): δ 1.46 (s, 1P), 0.78 (s, 1P).

Data for 2

¹H NMR (500 MHz, CDCl₃): δ 7.45–7.54 (m, 2H, py), 7.20 (br d, ³*J*_{HH} = 5.2, 1H, py), 6.22 (dt, ³*J*_{HH} = 16.0, ³*J*_{HH} = 7.0, 1H, C=CCH=C<u>H</u>), 5.98 (dt, ³*J*_{HH} = 16.1, ⁴*J*_{HH} = 2.0, 1H, C=CC<u>H</u>= CH), 5.36–5.39 (m, 2H, CH=CH), 3.88 (app t, *J*_{PH} = *J*_{HH} = 14, 1H, pyC<u>H</u>₂), 3.59–3.69 (m, 1H, CH₂), 3.41 (app t, *J*_{PH} = *J*_{HH} = 13, 2H, pyC<u>H</u>₂), 2.04–2.41 (m, 6H, CH₂), 1.89–1.99 (m, 9H, CH₂), 1.38–1.47 (obscured m, ~16H, CH₂), 1.25–1.35 (m, ~65H, CH₂ + P*t*Bu).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 153.5–153.8 (m, py), 143.3 (s, C=CCH=<u>C</u>H), 135.7 (s, py), 130.54 (s, CH=CH), 130.46 (s, CH=CH), 123.4 (s, py), 123.3 (s, py), 113.6 (s, C=C<u>C</u>H=CH), 92.5 (s, <u>C</u>=CCH=CH), 82.1 (s, C=<u>C</u>CH=CH), 37.2 (d, ¹*J*_{PC} = 42, py<u>C</u>H₂), 36.5 (d, ¹*J*_{PC} = 41, py<u>C</u>H₂), 35.5 (d, ¹*J*_{PC} = 23, PtBu {C}), 35.1 (d, ¹*J*_{PC} = 24, PtBu{C}), 32.8 (s, CH₂), 32.1 (s, CH₂), 32.4 (s, CH₂), 31.2 (s, CH₂), 29.9 (s, CH₂), 29.2 (s, CH₂), 29.12 (s, CH₂), 29.09 (s, CH₂), 29.07 (s, CH₂), 28.88 (s, CH₂), 28.86 (s, CH₂), 28.7 (s, CH₂), 28.3 (s, CH₂), 27.9 (s, CH₂), 27.6 (s, CH₂), 23.3 (d, ³*J*_{PC} = 4, CH₂), 22.9 (s, CH₂), 20.8 (s, CH₂).

³¹P{¹H} NMR (121 MHz, CDCl₃): δ 63.6 (s, 1P), 63.5 (s, 1P). HR ESI-MS (positive ion, 4 kV): 982.7566, $([M + H]^+, calcd$

982.7549) *m/z*.

HR ESI-MS2 (positive ion, 60 eV (a) +982): 542.3159 ([PNP- $14 \cdot 2S + H]^+$, calcd 542.3167) *m/z*.

Preparation of PNP-14 · 2S

A solution of PNP-14 (8.5 mg, 17.8 μ mol) in DFB (0.5 mL) was treated with S₈ (1.2 mg, 4.68 μ mol) and stirred at RT for 16 h. Volatiles were removed, and the resulting residue washed with methanol (2 \times 0.5 mL) and then dried *in vacuo* to afford the product as a white microcrystalline solid. Yield: 9.4 mg (17.3 μ mol, 97%; mp. 139–140 °C).

¹H NMR (500 MHz, CDCl₃): δ 7.59 (t, ³*J*_{HH} = 7.8, 1H, *p*-py), 7.35 (d app t, ³*J*_{HH} = 7.8, *J*_{PH} = 2, 2H, *m*-py), 3.49 (app t, ²*J*_{PH} = ²*J*_{HH} = 13, 2H, pyC<u>H</u>₂), 3.43 (app t, ²*J*_{PH} = ²*J*_{HH} = 14, 2H, pyC<u>H</u>₂), 1.99–2.10 (m, 2H, PCH₂), 1.68–1.86 (m, 4H, PCH₂ [δ 1.80, 2H] + CH₂), 1.24–1.58 (m, 22H, CH₂), 1.17 (d, ³*J*_{PH} = 15.9, 18H, *t*Bu).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 153.7 (dd, ²*J*_{PC} = 8, ⁴*J*_{PC} = 2, *o*-py), 136.6 (t, ⁴*J*_{PC} = 2, *p*-py), 123.4 (app t, *J*_{PC} = 3, *m*-py), 38.9

(d, ${}^{1}J_{PC} = 39$, pyCH₂), 34.8 (d, ${}^{1}J_{PC} = 47$, tBu{C}), 30.2 (d, ${}^{2}J_{PC} = 15$, CH₂), 27.9 (s, CH₂), 27.80 (s, CH₂), 27.79 (s, CH₂), 27.7 (s, CH₂), 26.3 (d, ${}^{1}J_{PC} = 47$, PCH₂), 25.3 (s, tBu{CH₃}), 22.4 (d, ${}^{3}J_{PC} = 4$, CH₂).

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 64.7 (s).

HR ESI-MS (positive ion, 4 kV): 542.3160 ($[M + H]^+$, calcd 542.3167) m/z.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the European Research Council (ERC, grant agreement 637313) and Royal Society (UF100592, UF150675, A. B. C.) for financial support.

Notes and references

- 1 (a) J. W. Steed and J. L. Atwood, *Supramolecular Chemistry*, John Wiley & Sons, 3rd edn, 2022; (b) J. E. M. Lewis, P. D. Beer, S. J. Loeb and S. M. Goldup, *Chem. Soc. Rev.*, 2017, **46**, 2577–2591.
- 2 M. Denis and S. M. Goldup, Nat. Rev. Chem, 2017, 1, 0061.
- 3 For selected examples see: (a) H. Han, J. S. W. Seale, L. Feng, Y. Qiu and J. F. Stoddart, J. Polym. Sci., 2023, 61, 881-902; (b) A. de Juan, D. Lozano, A. W. Heard, M. A. Jinks, J. M. Suarez, G. J. Tizzard and S. M. Goldup, Nat. Chem., 2022, 14, 179-187; (c) S. Rashid, Y. Yoshigoe and S. Saito, RSC Adv., 2022, 12, 11318-11344; (d) A. Acevedo-Jake, A. T. Ball, M. Galli, M. Kukwikila, M. Denis, D. G. Singleton, A. Tavassoli and S. M. Goldup, J. Am. Chem. Soc., 2020, 142, 5985-5990; (e) J. E. M. Lewis, J. Winn, L. Cera and S. M. Goldup, J. Am. Chem. Soc., 2016, 138, 16329-16336; (f) L. D. Movsisyan, M. Franz, F. Hampel, A. L. Thompson, R. R. Tykwinski and H. L. Anderson, J. Am. Chem. Soc., 2016, 138(4), 1366-1376; (g) A. Noor, S. C. Moratti and J. D. Crowley, Chem. Sci., 2014, 5, 4283-4290; (h) Z. Baranová, H. Amini, N. Bhuvanesh and J. A. Gladysz, Organometallics, 2014, 33, 6746-6749; (i) M. J. Langton, J. D. Matichak, A. L. Thompson and H. L. Anderson, Chem. Sci., 2011, 2, 1897-1901l; (j) K. D. Hänni and D. A. Leigh, Chem. Soc. Rev., 2010, 39, 1240-1251; (k) Y. Sato, R. Yamasaki and

- S. Saito, Angew. Chem., Int. Ed., 2009, 48, 504–507; (l)
 V. Aucagne, J. Berná, J. D. Crowley, S. M. Goldup,
 K. D. Hänni, D. A. Leigh, P. J. Lusby, V. E. Ronaldson,
 A. M. Z. Slawin, A. Viterisi and D. B. Walker, J. Am. Chem. Soc., 2007, 129, 11950–11963; (m) V. Aucagne, K. D. Hänni,
 D. A. Leigh, P. J. Lusby and D. B. Walker, J. Am. Chem. Soc.,
 2006, 128, 2186–2187.
- 4 (a) Q. Liang, K. Hayashi and D. Song, ACS Catal., 2020, **10**, 4895–4905; (b) B. M. Trost and J. T. Masters, *Chem. Soc. Rev.*, 2016, **45**, 2212–2238; (c) Y. Zhou, Y. Zhang and J. Wang, *Org. Biomol. Chem.*, 2016, **14**, 6638–6650.
- 5 (a) T. M. Hood and A. B. Chaplin, *Dalton Trans.*, 2021, 50, 2472–2482; (b) C. M. Storey, M. R. Gyton, R. E. Andrew and A. B. Chaplin, *Chem.-Eur. J.*, 2020, 26, 14715–14723; (c) C. M. Storey, M. R. Gyton, R. E. Andrew and A. B. Chaplin, *Angew. Chem., Int. Ed.*, 2018, 57, 12003–12006.
- 6 T. M. Hood and A. B. Chaplin, *Dalton Trans.*, 2020, **49**, 16649–16652.
- 7 T. M. Hood, M. R. Gyton and A. B. Chaplin, *Dalton Trans.*, 2020, **49**, 2077–2086.
- 8 (a) Phosphorus(m) Ligands in Homogeneous Catalysis: Design and Synthesis, ed. P. C. J. Kamer and P. W. N. M. van Leeuwen, John Wiley & Sons, 2012; (b) D. Steinborn, Fundamentals of Organometallic Catalysis, John Wiley & Sons, 2011.
- 9 M. R. Gyton, T. M. Hood and A. B. Chaplin, *Dalton Trans.*, 2019, **48**, 2877–2880.
- 10 S. D. Pike, M. R. Crimmin and A. B. Chaplin, *Chem. Commun.*, 2017, **53**, 3615–3633.
- 11 P. Pregosin, *NMR in Organometallic Chemistry*, Wiley-VCH, 2012.
- 12 J. H. Rivers and R. A. Jones, *Chem. Commun.*, 2010, **46**, 4300–4302.
- 13 C. A. Schalley, P. Ghosh and M. Engeser, *Int. J. Mass Spectrom.*, 2004, 232, 249–258.
- 14 T. R. Hoye, B. M. Eklov and M. Voloshin, *Org. Lett.*, 2004, 6, 2567–2570.
- 15 G. L. Parker, R. Van Lommel, N. Roig, M. Alonso and A. B. Chaplin, *Chem.-Eur. J.*, 2022, **28**, e202202283.
- 16 R. M. Friedrich, J. Q. Bell, A. Garcia, Z. Shen and G. K. Friestad, J. Org. Chem., 2018, 83, 13650–13669.
- 17 E. Neumann and A. Pfaltz, *Organometallics*, 2005, 24, 2008–2011.