Mechanisms underlying the nucleation processes of mesoporous ceria nanoparticles†
Abstract
Mesoporous ceria nanoparticles featuring ordered pores (O-MCNs) have much greater potential than their counterparts featuring interparticle pores (I-MCNs) due to their uniform pore size and interconnected framework structures. However, current methods can only synthesize I-MCNs and fail to achieve O-MCNs. Understanding the mechanisms underlying the formation of pores in I-MCNs can spark ideas for designing new methods to realize the synthesis of O-MCNs. In this study, the details of an established I-MCN synthetic method using 1-octadecene (ODE) and ethanol as a mixed solvent, Ce(NO3)3ยท6H2O as a precursor and trioctylphosphine oxide (TOPO) as a ligand were explored. The results revealed that six groups of molecules were generated ahead of ceria crystal nucleation, and these molecules played different roles in the formation of I-MCNs. Four steps, namely, ceria crystal nucleation, small ceria nanoparticle formation, small ceria nanoparticle assembly, and I-MCN growth, were involved in the formation of the I-MCNs. The assembly of small ceria nanoparticles driven by the fusion of the (200) plane leaving behind unoccupied spaces was the major reason for the formation of pores in the I-MCNs. These findings provided very useful information for the future design of new methods to achieve O-MCNs.