Issue 4, 2024

Dependence of copper(i) stability on long-range electromagnetic effects of Au under reducing atmospheres: the size effect of Au cores

Abstract

It has been widely recognized that adjusting the size of Au particles has emerged as a significant approach in catalyst design, catalyst screening, and comprehension of reaction mechanisms. However, the essential factors of Au nanoparticles used only as an additive to enhance the activity of traditional multicomponent thermocatalysts have not been fully revealed. In this study, a series of Au@Cu2O core–shell nanocatalysts were synthesized through a controllable method, featuring core sizes ranging from 11 to 33 nm and an average shell thickness of approximately 55 nm. It was revealed that the size effect of Au cores plays a very vital role in the stability of the active Cu+ species under reducing atmospheres (H2, acetylene and formaldehyde) as well as the catalytic performance of the catalysts in the ethynylation of formaldehyde. The experimental findings revealed that Au@Cu2O core–shell catalysts with Au core sizes ranging from 11 to 16 nm exhibited a higher abundance of electron-deficient Cu+ species in the shell, which is attributed to the strong long-range electromagnetic effects of the Au core in the absence of photoexcitation or an applied electric field. Additionally, the active Cu+ species demonstrated remarkable stability under reducing atmospheres. Although the stability of Cu+ decreased slightly when the Au core size exceeded 16 nm, the Cu+ content remained above 80%. Notably, the Au@Cu2O catalysts with Au core sizes ranging from 11 to 16 nm exhibited excellent catalytic activity in the ethynylation of formaldehyde.

Graphical abstract: Dependence of copper(i) stability on long-range electromagnetic effects of Au under reducing atmospheres: the size effect of Au cores

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2023
Accepted
18 Dec 2023
First published
19 Dec 2023

Nanoscale, 2024,16, 1971-1982

Dependence of copper(I) stability on long-range electromagnetic effects of Au under reducing atmospheres: the size effect of Au cores

X. Huang, H. Li, B. Zhang, Y. Zhang, H. Wang, L. Ban, Y. Xu and Y. Zhao, Nanoscale, 2024, 16, 1971 DOI: 10.1039/D3NR04330D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements