Facile formation of tetrazole–thiolato Pd(ii) and Pt(ii) complexes through deprotonation or oxidative addition using organic tetrazole–thiones†
Abstract
Mono or bis(tetrazole–thiolato) Pd(II) or Pt(II) complexes were obtained from the reactions of dialkyl Pd(II) or Pt(II) complexes with organic tetrazole–thiones (1-aryl- or 1-alkyl-1H-tetrazole-5-thiones) via deprotonation. In contrast, equimolar reactions of zerovalent Pt(0) or Pd(0) complexes with organic tetrazole–thiones afforded hydrido or bis(tetrazole–thiolato) Pt(II) and Pd(II) complexes, and cyclometallated Pt(II) or Pd(II) complexes bearing a tetrazole–thiolato moiety via oxidative addition, depending on the organic substituents on the tetrazole–thiones. In particular, variable (time and temperature)-dependent 1H-NMR spectra of the hydrido Pt(II) tetrazole–thiolates reveal an upfield shift of the hydride signal, suggesting N,S-coordination behavior of the tetrazole–thiolato ligand. Additionally, the N-CH2 signal corresponds to the six-membered ring of platinacycle or palladacycle exhibiting geminal coupling with multiple protons and PR3 ligands; these coupling values were further determined using 1H{31P} experiments. Finally, treatment of the alkyl Pd(II) tetrazole–thiolate or Pd(II) bis(tetrazole–thiolates) with organic tert-butyl isocyanide, thiophenol, and organic halides caused the selective insertion of the isocyanide into the Pd–C bond or deprotonation to afford a Pd(II) disulfide complex and substitution to afford new organic tetrazolyl sulfides.