Issue 17, 2024

Near-infrared responsive magnetic photocatalyst based on NaYF4:Yb3+/Er3+@Cu2O@MoS2@Fe3O4 for the efficient degradation of organic contaminants

Abstract

In the realm of photocatalysis, effectively utilizing solar energy, especially the near-infrared (NIR) spectrum, presents substantial challenges. To tackle this issue, a novel composite of NaYF4:Yb3+/Er3+@Cu2O@MoS2@Fe3O4 (denoted as NYE@Cu2O@MoS2@Fe3O4) was ingeniously fabricated and assessed for the photodegradation of organic contaminants. By harnessing the distinct properties of upconversion materials, narrow bandgap semiconductors, and magnetic substances, the NYE@Cu2O@MoS2@Fe3O4 catalyst possesses a photodegradation rate of 92% for the rhodamine B dye under NIR light radiation, which is superior to NYE@Cu2O (50%) and NYE@Cu2O@MoS2 (85%). The enhanced performance in the near-infrared photocatalysis of NYE@Cu2O@MoS2@Fe3O4 is mainly attributed to the synergistic effect of various components, which promotes an increase in photo-induced carrier generation and facilitates their efficient transfer and energy utilization under NIR irradiation. This study provides a possible route for the near-infrared photocatalytic degradation of pollutants in areas with limited light or even dark conditions.

Graphical abstract: Near-infrared responsive magnetic photocatalyst based on NaYF4:Yb3+/Er3+@Cu2O@MoS2@Fe3O4 for the efficient degradation of organic contaminants

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2024
Accepted
25 Mar 2024
First published
05 Apr 2024

New J. Chem., 2024,48, 7688-7698

Near-infrared responsive magnetic photocatalyst based on NaYF4:Yb3+/Er3+@Cu2O@MoS2@Fe3O4 for the efficient degradation of organic contaminants

Y. Ma, W. Zhang, Z. Wu, Z. Liang, Y. Huang, Q. Tan, T. Liu, D. Han and L. Niu, New J. Chem., 2024, 48, 7688 DOI: 10.1039/D4NJ00415A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements