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Thermoelectric transport in Weyl semimetals under
a uniform concentration of torsional dislocations+
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In this article, we present an effective continuum model for a Weyl semimetal, to calculate its thermal and

thermoelectric transport coefficients in the presence of a uniform concentration of torsional dislocations.
We model each dislocation as a cylindrical region of finite radius a, where the corresponding elastic strain is
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described as a gauge field leading to a local pseudo-magnetic field. The transport coefficients are obtained

by a combination of scattering theory, Green's functions and the Kubo formulae in the linear response
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1 Introduction

Not long after being postulated as a theoretical concept,'” Weyl
semimetals (WSMs) were discovered in TaAs crystals.® WSMs
constitute important examples of three-dimensional, gapless
materials with non-trivial topological properties, as their band
structure displays an even number of Weyl nodes. Near each
node, the charge carriers are massless quasi-particles with
linear dispersion and pseudo-relativistic properties.*” In
particular, each node is a monopolar source of Berry curvature,
and hence they are protected from being gaped since their
topological charge (chirality) is an invariant.” This implies that
in Weyl fermions, the projection of spin over their momentum
direction is preserved, a condition referred to as “spin-
momentum locking”.

Some remarkable properties related to the existence of Weyl
nodes in the bulk band structure are the presence of Fermi
arcs,® the chiral anomaly, and the chiral magnetic effect.” As
a consequence, in recent years considerable effort has been
devoted to the study of the electronic transport properties of
WSMs, including the effects of different scattering mecha-
nisms, such as electron-phonon and localized impurities.***®
Different estimations in the literature report first-principles
calculations for the optical conductivities in the monopnictide
family (TaAs, TaP, NbAs and NbP),"*> which in the low-
frequency (DC) limit are in the range g, ~ 10* to 10°
Q' em ™! (see Table 1). Concerning the electronic contribution
to the thermal conductivity, including the aforementioned
scattering mechanisms, estimations based on first-principles
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regime. We applied our theoretical results to predict the electrical and thermal conductivities as well as
the Seebeck coefficient for several transition metal monopnictides, i.e. TaAs, TaP, NbAs and NbP.

calculations®*2* report values in the range «<&) ~ 20-100 W
K ' m . The lattice contribution, on the other hand, is strongly
dependent on the masses of the nuclei, and hence it varies in
awider range for the different materials k&) ~ 1-190 WK ' m™!
(see Table 1). It has been proposed that generic semi-metals
may constitute attractive candidates for thermoelectric appli-
cations due to their relatively large Seebeck coefficients at room
temperature |S| ~ 10% uV K~ '.2° This parameter is very sensitive
to the density of carriers through the chemical potential, but
different estimations in the literature for the family of transi-
tion metal monopnictides report values in the range |S| ~ 10> to
10° pv K ' (ref. 23-25) at room temperature. Therefore, the
general concept of “Topological Thermoelectrics” has generated
a lot of interest in the materials science community, with
excellent recent reviews> on the subject.

In contrast with results reported in the literature, the effects
of mechanical strain and dislocations or disclinations have
been theoretically explored to a much lesser extent in the
context of electronic and thermal transport properties. Those
defects can be modeled in a continuum approximation by gauge
fields**3° in WSMs. More recently, the role of gauge fields has
been explored in acoustic crystal realizations of topological
materials as well,** particularly in their role in representing
topological defects.*

Table 1 Values of the DC conductivity a4 the electronic £ and

lattice K)(([))( contributions to the thermal conductivities at 300 K reported

in the literature

Material 0, (10 Q' em™?) el WK 'm™") «9 WK 'm™*
TaAs ~1-10 (ref. 19) 56.87 (ref. 23) 36.06 (ref. 23)
TaP 12.5 (ref. 20) ~100 (ref. 24) ~190 (ref. 24)
NbAs 307.6 (ref. 21) 21.2 (ref. 25) 1.37 (ref. 23)
NbP 102 (ref. 22) 33.8 (ref. 25) 1.99 (ref. 25)
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In our previous studies, we have studied quasi-ballistic
transport through a nano-junction in a WSM with a single
torsional dislocation, in combination with an external magnetic
field. For such a system, we obtained the electronic*~* and
thermoelectric®** transport coefficients, using the Landauer
ballistic formalism in combination with a mathematical anal-
ysis for the quantum mechanical scattering cross-section.*
More recently, we considered the case of a diluted, uniform
concentration of torsional dislocations and their effects on the
electrical conductivity of type I WSMs,*” by means of the Kubo
linear-response formalism. The effect of the random distribu-
tion of dislocations, with a concentration nq (per unit area), is
incorporated in the form of a disorder-averaged self-energy into
the corresponding Dyson's equation for the retarded and
advanced Green's functions. Furthermore, as described in ref.
37 a vertex correction obtained as a solution to the Bethe-Sal-
peter equation was incorporated into the Kubo linear response
formulae.

In the present work, our purpose is to further extend this
study, in combination with Onsager relations of non-
equilibrium thermodynamics, to obtain the electronic compo-
nent of the thermal conductivity and Seebeck coefficient in
these materials, limited by this particular scattering mecha-
nism, as a function of temperature and concentration of
dislocations. We remark that this is the single scattering
mechanism that we shall focus on this study, since it requires
a special modeling as compared to other mechanisms that have
been already discussed extensively in the literature. Moreover,
as we state in the Discussion, Mathiessen's rule allows one to
combine all these different contributions via the overall relax-
ation time in the estimation of the transport coefficients.

We present explicit evaluations of our analytical expressions
for the electrical and thermal conductivity, as well as for the
Seebeck coefficient, as a function of temperature and concen-
tration of dislocations nq, for several materials in the family of
transition metal monopnictides, i.e. TaAs, TaP, NbAs and NbP,
with microscopic parameters estimated from ab initio calcula-
tions as reported in the literature.”***® Our calculations show
that, although the Wiedemann-Franz law is satisfied for all
such compounds in the low-temperature limit, the Seebeck
coefficient leads to a large figure of merit Z7 > 2 even at room
temperature for TaAs. Therefore, our theoretical results suggest
that the transition metal monopnictides may constitute very
attractive candidates for thermoelectric applications in energy
harvesting. Since our model only captures the electronic
contribution to the thermal conductivity, this possibility must
be further explored to evaluate in more detail the role of
phonon-related scattering effects and lattice thermal
conductivity.

2 Scattering by a uniform
concentration of dislocations

Let us start with an effective continuum model for a type I WSM,
in the presence of a uniform concentration nq = Ng/A (per unit
transverse surface) of identical cylindrical dislocations of finite
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radius a, as depicted in Fig. 1. The spatial distribution of such
defects is represented by the density function

px) = D 0(x X)) W

where X; is the position of the Jj™M-dislocation's axis. We model
this system using the Hamiltonian®”

H =H +7, 2)
where

ﬁ:) =&vpa-p (3)

for ¢ = (o4, 0y, 0;) the vector of Pauli matrices represents the
free-particle Hamiltonian at each of the Weyl nodes K. = £b/2,
labeled by their corresponding chirality index £ = +, and vy is
the Fermi velocity. In addition, V represents the scattering
potential due to the presence of the random distribution of
dislocations,

V= [ m-x) =Y Hx-X) @)

given that the contribution from a single dislocation defect is
given by***”
AL

H|(x) = Eevg (0'~$) %Bgr@(a — 1)+ Voo(r — a)ay. (5)

Here, r; = |x — Xj| is the distance from the center of each
dislocation 1 =< j =< Ny (see Fig. 1), and é= (—sin ¢,cos ¢,0) the
azimuthal unit vector in polar coordinates. Eqn (5) contains the
interaction with each cylindrical dislocation of radius a, where

y
®

OIS S

O gy

X

Fig. 1 Random distribution of torsional dislocations, as seen from
a plane perpendicular to the cylinder axis. Each dislocation is modeled
as a cylinder of radius a, whose central axis is located at the vector X;
(on the perpendicular plane x—y). The position of an arbitrary point P
on the plane is x = (x, y), and we define r; = [x — X|| as its relative
distance from the j" dislocation axis.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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torsional strain is described as a pseudo-magnetic field B in its
interior r < a,**” as described by the Heaviside function ®(a —
r). The corresponding lattice mismatch effect at the boundary
= a is represented by a repulsive delta barrier**?” with strength
Vo. In this formalism, the pseudo-magnetic field B = V x A
representing strain is proportional to the torsional angle 6 (in
degrees), a relation that is convenient to express in terms of its
flux through the circular cross-section of each cylindrical
region: [B%|a* = 1.360%,.* Here, we defined the modified flux
quantum representing the dislocations in these materials by

~ hv .
$o=— =~ 330 T A~
e
As described in detail in ref. 37, we include the effect of

disorder by taking the configurational average over the statistical
distribution of dislocations, defined as

=] Exrir) ©

where fX;) is any function of the dislocations' positions and
P(X)) is their statistical distribution function in the sample. In
particular, for a uniform distribution we have P(X;) = 1/4, where
A is the area of the plane normal to each cylinder's axis.

As we shall present in the next section, for the calculation of
the thermal and thermoelectric transport coefficients in this
material, we are interested in the disorder-averaged retarded
Green's function

1

AED
(6" 00) = v

Here S{f)‘) = £Mvplk| is the energy spectrum of the “free”
massless Weyl fermions, with A = +1 the band indexand £ = +1
their chirality. In addition, the retarded self-energy has the form

)

SE(E) = Rexl” (k) + i ImXE (k). (8)

As usual, the real part of the self-energy renormalizes the
single-particle energy spectrum, while the imaginary part
represents the scattering relaxation time t*”(k) through the
relation

EAn

ImE (k) = T (9)

The advanced self-energy is given by the complex conjugate
of the retarded self-energy, i.e., S§Y(E) = [Z&Y(E)]*. Similarly,
the  advanced  Green's function is given by

(6 () = (6 (1) -

As discussed in standard ref. 40 and 41, for small concen-
trations ng/(rks”) < 1, the total Green's function in eqn (7) can
be accurately calculated by adding the sequence of diagrams for
the retarded self-energy as presented in ref. 37, an approach
known as the non-crossing approximation (NCA). This series of
diagrams corresponds to the configurational average of the 7-
matrix over the random distribution of dislocations after eqn (6)

Ex ~(£2) £x
SEE) = (T7(E)) = naT{, (10)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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where the elements of the T-matrix are given by
T = (W A)T< (g )‘wm and k= (k;, k,), with k; = (k,, k,) the
momentum on the plane perpendicular to the cylindrical
dislocation axis. As we showed in ref. 37, the real part of the self-
energy is expressed in terms of the phase shifts 9,,(k) for each
angular momentum component m € Z

25;\7’!(17”71: - .
— Z cos 6,,(k)sin 6,,(k).

m=—o0

Rex{ (k) = — (11)

This infinite series over highly oscillatory terms converges to
zero, and therefore no contribution arises from the real part of
the self-energy. On the other hand, the imaginary part of the
self-energy in eqn (9) gives the scattering relaxation time in
terms of the phase shifts

1 2and

‘L’(T = kH Z sin 6,,7

m=—w%

(12)

and we can see that it is a positive definite quantity, inversely
proportional to the concentration of dislocations TG gt
The phase shifts d,,(k) for this system were calculated in ref. 35
and their analytical expression is given in eqn (1) of the ESLf
Also, the explicit expression for the T-matrix elements in terms
of these phase shifts is given in eqn (2) of the ESL.{

3 Onsager coefficients in the linear
response regime

In the present work, our purpose is to study the thermal and
thermoelectric transport coefficients in these topological
materials in the presence of a finite concentration of disloca-
tions nq4 as the single scattering mechanism. For this purpose,
in what follows we shall apply the basic principles of non-
equilibrium thermodynamics. Associated with the particle
current j, defined by the operator

Q)

i =i (1) = vy, (13)
and the heat current operator jg)
i(QE) (r)=j ; (r) =& < - ,u) [r)o|r), (14)

the macroscopic currents are given by the corresponding
ensemble averages

TSI Sl )

| ]

(15)

The entropy production rate is expressed in terms of the
macroscopic currents and gradients as follows***>

as

1 1

Nanoscale Adv., 2024, 6, 2701-2712 | 2703
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Let us introduce the Onsager coefficients by means of the
tensor notation

iy =)
=—L 'V V L V(= 17
J=—L Sren+Lov(g). o7
1 =D -

The transport coefficients can also be expressed in terms of
these tensors, by applying the corresponding definition as
follows: first, let us assume that VT'= 0 and Vu = 0, such that
the electrical conductivity tensor is then given by

(18)

On the other hand, we remark that the thermal conductivity,
by definition, is measured under conditions such that no elec-
tric current flows through the material J = 0. Then, combining
eqn (17a) and (17b) we conclude that the thermal conductivity
tensor is given by the expression

o 1 /@ o) o )
K:—(L L -[L ] L )

73 (19)

while the Seebeck coefficient (thermopower) is given by

1 re=Dya 02

«—>
s-=—[L ] -L 20
eT (20)
The Onsager coefficients can be expressed in terms of the
Kubo formulae in the linear response regime. From the entropy

production rate in eqn (16), we have

do as 1
Pl TE =-J-Vu+eV)+ TJQ-V(T)
, (1)
= F(n) = TZJ,-‘X;,
where J; =], J, = Jo, and
1
Xl = _TV(“ + €V)7
(22)

-s(t)

In eqn (21), F(¥)
function”.**

We shall apply the Luttinger formalism* for the evaluation
of the Onsager coefficients. For this purpose, we begin by
expressing the Kubo formulae for the different currents (i =1, 2)

in the form

is usually termed the “dissipation

£ 6
J,:—J dte"”J dﬁ'Tr{ﬁogF(—t—ihﬂ')i(r) . (23)
0 0 a1
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where s is a positive quantity that guarantees the adiabatic
switching-on of the perturbation that drives the system out of
equilibrium, and the limit s — 0" is taken at the end of the
calculation. In eqn (23), we also defined the equilibrium density

operator
el ()
E(B,V,u)

where Z(8,V,u) = Tr exp[—B(H* — w)] is the grand-canonical parti-
tion function.
When inserting eqn (21) into eqn (23), we obtain

/p\O = ’ (2 4)

J,‘ = —T[ d[@iﬁ
Jo

Po (Zik (—t—ing) -Xk)i,-(r)} :

k

p (25)
X J dg'Tr
0

Then, we conclude

) - 6 . .
LY = fTL dre™ JO dB'Tr [pofio(—t — iB)j,5).  (26)

In these expressions, the electric eqn (13) and heat current
eqn (14) operators, respectively, can be combined into a single
definition (for i = 1, 2)

i) = (A ) et 27)

Finally, as we show in Section 3 of the ESI,i we obtain the
corresponding Onsager coefficients by considering the spatial
average of the corresponding tensors. This is equivalent, in
Fourier space, to take the limit of the momentum q — 0 in each
of these coefficients

L(T) = il (:7), (28)

where L{%) = ZL%&) involves the linear superposition of band
A

and chiral components.

In particular, in the limit of low concentrations ng/mks” < 1,
the Onsager coefficients (for 7, j = 1, 2) are given by

it 4hV2 T “ fo(E iti—
-, () [ ()1

e

where we have taken into account the vertex corrections I'ry(k,
E), as described in Section 2 of the ESL.T

At low temperatures, a closed analytical solution is possible
since the derivative of the Fermi distribution takes a compact
support at the Fermi energy. Therefore, we can evaluate the
vertex function at the Fermi momentum ki, to obtain
for the bulk Onsager coefficients the simplified expressions
(fori,j=1,2)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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LUEY (T) =

o

B ey [ arefe _ )
S (k) L dkk (5k */L)

o e87) 1 (2)]

where the total transport relaxation time,

(30)

2
4

S sin[8, () - 8,1 ().

m=—w

(k%), is given by

1 o an Vg
G

(31)

We remark that, along with the scattering relaxation time
derived directly from the self-energy in eqn (12), the transport
relaxation time in eqn (31) is inversely proportional to the
concentration of dislocations rg’?) ~ ng ', The details of its deri-
vation, as well as the computation of the integrals in eqn (30), are
described in detail in the ESL{ In terms of these integrals, we
finally obtain closed analytical formulae for the Onsager
coefficients:

860 [kaT\’ ), oo ag
8 (B_) ‘EE;)‘>(k§F)L12 _eksT

_ 32
Skl \ 2)

12:£1 212
L) = L3 (T) =

 8EAhdug <kB T)“
h

37'52](31);52

_ (33)
Ag;

G ag Ag
xt (ki) |3Lis | —elsT | —

—eksT

A 3
ey,
T

B

and

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

L(ZZ;E)\)(T) . 8]}126041 (kB—T) 5
af -

37Tsz Vgi() h

AN S A AN A -
|:]2L14 (—ek“T) — kB;Lb —eksT | 4 (K]F,) L12 —eksT s

(34)

(cc)

where in all those expressions, Lij(z) stands for the poly-
logarithm function of order s. The electrical conductivity is
obtained from eqn (18) and (32)

2
e -
7ul) = Y S LT, (39
[ pumn |
and then, we obtain
8 (ksT\’ (&
TaalT) = =35 <T> (5
o) : (36)
al (k)|
X > Li, eks
— PN
fa—tl Fa

Similarly, the electronic thermal conductivity is obtained
from eqn (19) and (32)-(34)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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D ngg;wn)

£kl

> L07(T)

£ =kl

) (3 7)

) = 75| X 2 -

£a=+1

and the Seebeck coefficient is obtained from eqn (20), (32)
and (33)

S L0(T)
1 =t

Ty [(T)

£ =+l

Saa(T) = (38)

4 Results

In this section, we shall evaluate our analytical expressions to
estimate the transport coefficients of several WSMs in the family of
transition metal monopnictides. For this purpose, we shall
consider the microscopic/atomistic parameters obtained from
first-principles calculations, as reported in ref. 39 and 17. We shall
also take into account the anisotropies reported by ref. 17 in the
Fermi velocities and density of charge carriers at different Weyl
nodes (£ = +) and bands (2 = %), respectively. These two references
computed values for the Fermi energy with respect the position of
each of the Weyl nodes as presented in Table 2.

We shall assume that the z-direction is aligned with the
crystallographic direction of the defect axes, while the temper-
ature and/or voltage gradients are imposed parallel to the xy-
plane. Therefore, we shall employ the x- and y-components of
the Fermi velocities v averaged from the reported values given
in ref. 17 and 39 (see Table 3), for the conduction (A = +1) and
valence (A = —1) bands, as well as for each of the chiral Weyl
nodes (§ = +1), respectively. From the energies presented in
Table 2 and the Fermi velocities given in Table 3, we can
compute the Fermi momenta at each node using the formula
given in ref. 17.

AEF) = A{_Z [v;fy (k- k%v)r} ;

J=xy,z

(39)

where Ky is the wave-vector location of each Weyl node in
momentum space. The computed values of the Fermi momenta
are shown in Table 4.

In order to estimate the geometric and structural parameters
involved in the model, we follow the analysis presented in our
previous work.* Therefore, we assume that the cylindrical
regions representing the dislocations have a radius a = 15 nm.
From the proportionality relation between the torsional angle ¢
(in degrees) and the pseudo-magnetic field representing strain
[B¥|a> = 1.3603,,* the modified flux quantum associated
with the dislocations in these materials is approximately
éoz@: L vehe 215 4 14x10° T A = 330 T A%

e 2T ¢ e 27 300
Moreover, for definiteness, in this work we have chosen
a torsion angle § = 15°. Finally, for the parameter « = V,/hvg that
captures the effect of the delta barrier representing the lattice

Nanoscale Adv., 2024, 6, 2701-2712 | 2705
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Table 2 Values of AE: = & — &, from ab initio computations reported in the literature. Here, & is the Fermi level and &5, is the energy at the
Weyl node &£. We use the average of the two values

Material A&} (ev)" A&} (ev)™ A&} (eV) average AE; (ev)" AE; (ev)™ AE; (eV) average
TaAs 0.026 0.0221 0.02405 0.013 0.0089 0.01095

TaP 0.055 0.0531 0.05405 —0.021 —0.0196 —0.0203

NbAs 0.033 0.0322 0.0326 —0.004 —0.0042 —0.0041

NbP 0.056 0.0534 0.0547 —0.026 —0.0259 —0.02595

Table 3 Values of the Fermi velocity v(FE,f;’ in the units of 10° m s~ In the valence band (A = —1) they correspond to hole velocities. We use the

average of the reported values in ref. 17 and 39. Tables with the reported values are given in Section 4 of the ESI

Material v%fp v%f;) v%f,: ) i) vgj) vg{y’) v(Fff) v(F;,’) v%fg) v(Ff; ) V%T;) vﬁ{z’)
TaAs 2.85 —5.25 2.5 —4.3 2.2 —2.3 3.5 —1.75 0.2 —0.2 4.35 —1.6
TaP 3.4 —5.55 2.15 —4.0 2.55 —2.55 3.05 —2.05 0.2 —0.2 4.3 —1.45
NbAs 2.75 —4.8 2.45 —3.25 1.65 —1.7 2.3 —1.25 0.1 —0.1 3.65 —1.15
NbP 3.35 —5.4 1.9 —2.8 2.2 —2.3 2.05 —1.65 0.0(3) 70.0(3) 4.0 —1.2

Table 4 Values of ki computed from the average A& given in Table 2
and the Fermi velocities given in Table 3 using egn (39)

Material K (nm™! kr (nm™)
TaAs 0.1013 0.0272
TaP 0.1796 0.0653
NbAs 0.1544 0.0170
NbP 0.2073 0.1138

mismatch at the edge of the cylindrical dislocation, we follow
our previous estimations based on Frank's law*® by setting o =
37/4.

As clearly seen in eqn (36)-(38), our analytical expressions for
the electronic transport coefficients depend on the total trans-
port relaxation time due to the scattering with the dislocations
at the Fermi energy. In Table 5, we present calculated values of
such relaxation times, for different transition metal monop-
nictides, assuming the structural parameters in our model. For
an estimation of the concentration of defects ng in real crystal
systems, ref. 38 reports a native concentration of dislocations in
the range nqy ~ 10° to 10” ecm > for the materials TiO, and
SrTiO;. These concentrations can be enhanced using different
treatments up to 10" em™>, close to the rendering amorphous
limit. Also, as is pointed out in ref. 44, the maximal practical
density of screw dislocations detected in materials using elec-
tronic microscopy is in the range 10" to 10'> cm™>. Assuming
then that a realistic concentration of dislocations would be in

Table 5 Transport relaxation time (along the x-direction) for each
node & = +1 and material. The result was computed from egn (31) by
assuming a concentration of dislocations nq = 2 x 10° cm ™2

Material T (10712 5) T (10712 5)
TaAs 4.24 2.71
TaP 3.79 3.00
NbAs 4.64 2.16
NbP 3.90 5.55

2706 | Nanoscale Adv, 2024, 6, 2701-2712

the range ngq ~ 10° to 10"* em ™2, an important aspect to check is
if the ratio ng/(mks>) < 1 for the materials involved, in order for
our approximations to be valid. From the values for the Fermi
momenta reported in Table 4, we see that the four materials
satisfy k& > 0.01 nm . Therefore, for the aforementioned range
of concentrations, the ratio ng/(mks*) ~ 107> to 10!, and hence
our approximations are well justified for all four materials
analyzed in this study.

The DC conductivity and electronic thermal conductivity, as
a function of the concentration of dislocations, are displayed in
Fig. 2 and 3, respectively, where a temperature 7 = 5 K was
assumed. We see that both transport coefficients exhibit an
inverse proportionality, i.e. gy, ~ nq *and ke ~ ng Y, since the
transport relaxation time defined in eqn (31) is itself inversely
proportional to the concentration of defects 16 ~ g™l In
particular, as seen in Table 5, for a concentration of dislocations
ng = 2 x 10° ecm ™2 the relaxation times in all four materials are
on the order of 7, ~ 10 **s.

As displayed in Fig. 4, the electrical conductivity of all
materials depends on temperature, and assuming

40

30

20

022[103 QL em ™

0 200 400 600 800
— 2]

1000
nq[107 cm

Fig. 2 Electrical (DC) conductivity o, versus the concentration of
dislocations computed from egn (37) at T =5 K, for the transition metal
monopnictides TaAs, TaP, NbAs and NbP.
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K0T WK m™})
] W N

—

0 200 400 600 800
ng[107 cm™?]

1000

Fig. 3 Electronic thermal conductivity & versus the concentration of
dislocations computed from egn (37) at T = 5 K, for the transition metal
monopnictides TaAs, TaP, NbAs and NbP.

a concentration of defects of ng = 2 x 10° em™?, it is in the range
of o ~ 10* to 10° Q' em ™', with NbP being the better
conductor. A similar hierarchy among the four materials is
observed in Fig. 5 for the electronic thermal conductivity, which
displays a nearly linear dependence up to room temperature.

50

—— TaAs TaP

- NbP

0
0 50 100 150 200 250 300
T[K]
(@

140
120 —— TaAs TaP
rrrrr NbAs - NbP

100

80

0, [10° Q7 em ™

0 50 100 150 200 250 300
T[K]

(b)

Fig. 4 The figure shows the DC electrical conductivity for the tran-
sition metal monopnictides TaAs, TaP, NbAs and NbP: (a) displays gy
and (b) displays g,,. Here we assume a concentration of dislocations of
ng=2x10°cm2
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(b)
Fig. 5 Electronic thermal conductivity versus temperature computed

from eqgn (37) for the transition metal monopnictides TaAs, TaP, NbAs

and NbP: (a) shows «& and (b) shows «’. Here we assume
-2

a concentration of dislocations of nq = 2 x 10° cm

Results computed from eqn (36) for the DC conductivity along x-
and y-directions at zero and room temperatures are presented
in Table 6. We observe anisotropy between the x- and y-direc-
tions, due to the anisotropy in the components of the Fermi
velocity, as can be appreciated in the values displayed in
Table 3.

As seen in Fig. 5, the room temperature electronic thermal
conductivity in all four compounds, assuming the same
concentration of defects ngy = 2 x 10° em™?, is on the order
&) ~ 10 to 10> W K m . The reason why NbP exhibits higher
values of electrical and thermal conductivity as compared to the

Table 6 Values of the o,y and a,,, DC conductivities (in the units of 103
Q'cm™1 at 0 K and 300 K for each material. The result was computed
from egn (36) by assuming a concentration of dislocations nq = 2 x
10° cm™2

Material xx (0 K) 7,y (0K) 0xx (300 K) 7y (300 K)
TaAs 7.52 11.46 38.71 50.00
TaP 24.75 43.99 45.16 86.66
NbAs 13.61 37.80 42.05 136.08
NbP 26.42 61.26 51.24 122.62
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Table7 Values of the k{5 and {5 electronic thermal conductivities (in
the units of W K™ m™) at 300 K for each material. The result was
computed from egn (37) by assuming a concentration of dislocations
Nng =2 x 10° cm™2

Material < (300 K) ) (300 K)
TaAs 26.17 33.68
TaP 32.88 66.90
NbAs 29.15 96.57
NbP 40.47 99.16

other materials in the monopnictide family is because its kg is
almost an order of magnitude larger, as shown in Table 4. The
effect becomes dominant due to the presence of kr in the
exponential of the argument of the polylogarithmic functions in
the analytical expressions for the electric and thermal conduc-
tivities. In physical terms, since such an exponential factor
arises from the Fermi-Dirac distribution at finite temperature,
it implies a higher population of chiral Weyl fermions available
for transport as compared with the other materials in the same
transition monopnictide family. Results calculated using eqn
(37) for the electronic contribution to the thermal conductivity
along x- and y-directions at room temperatures are presented in
Table 7. Again, we observe anisotropy between the x- and y-

-50

-100

See[VEK™

-150

-200

0 50 100 150 200 250 300
TIK]

@

-50

-100

SyyV K_l]

-150

—200

0 50 100 150 200 250 300
T[K]

(®)

Fig. 6 Seebeck coefficient versus temperature computed from egn
(38) for the transition metal monopnictides TaAs, TaP, NbAs and NbP:
(a) shows S, and (b) shows S,,,.
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directions, as a consequence of the anisotropy in the Fermi
velocity components in these materials.

From the expressions for the electrical conductivity in eqn
(36), the electronic thermal conductivity in eqn (37), and the
Seebeck coefficient in eqn (38), we can compute the Lorenz
number

K(el)(T)

L(T) = Je=

T Tou(T)’ (40)

and the dimensionless figure of merit (based on the elec-
tronic thermal conductivity), an important indicator for ther-
moelectric applications

2 To.(T)

ZT(T) = § )
ao ) K&? (T)

(41)

In Fig. 7, we represent the Lorenz number, calculated from
eqn (40) for all four materials as a function of temperature.
Remarkably, L(T — 0) — L, = (7*/3)(ks/e)’, and hence the
Wiedemann-Franz law is indeed satisfied in the limit of very
low temperatures, a common feature for normal metallic
systems, that is however also verified in these semimetal
compounds.

—— TaAs TaP
LOS | NbAs -.-- NbP
5
~ 1.00
38
N
0.95
0 50 100 150 200 250 300
T[K]
(@
top e
—— TaAs TaP
»»»»» NbAs - NbP
1.05

0 50 100 150 200 250 300
T[K]

(b)

Fig. 7 Electronic Lorenz number versus temperature computed from
egn (40) for the transition metal monopnictides TaAs, TaP, NbAs and
NbP: (a) shows L& and (b) shows L. Notice that the value for the
Wiedemann—Franz law is Lo = (m?/3)(kg/e)® = 2.44 x 10 8 V2 K2,
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Fig. 8 Electronic figure of merit ZT® (dimensionless) versus
temperature computed from egn (41) for the transition metal

monopnictides TaAs, TaP, NbAs and NbP: (a) shows ZT" and (b)
shows ZT&).

In Fig. 6, we present the Seebeck coefficient as a function of
temperature, calculated from eqn (38) for the different mate-
rials. The negative sign of the Seebeck coefficient is consistent
with the choice of a positive chemical potential, where the
charge carriers are therefore electrons (instead of holes). For all
materials, the Seebeck coefficient at room temperature is on the
order of || ~ 10% uv K%, and its absolute value grows at lower
temperatures. This is consistent with different estimations in
the literature for the family of transition metal monopnictides,
reporting values in the range |S| ~ 10 to 10° pv K (ref. 23-25)
at room temperature.

Finally, in Fig. 8 we present the figure of merit Z7¢) calcu-
lated from eqn (41), for all different materials as a function of
temperature. As both the DC conductivity and the electronic
thermal conductivity are inversely proportional to the concen-
tration of dislocations, ie. . ~ nq ' and & ~ ng~?, this
parameter cancels in their ratio in eqn (41), and hence Z7(V
turns out to be independent of n4. However, a weak dependence
on the presence of dislocations remains, since the scattering
relaxation time is still a function of such defects through the
scattering phase shifts 9,,(k), as seen in eqn (31). Nevertheless,
we could check that this effect also tends to cancel with the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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relaxation time upon taking the ratio leading to z7', and in
practice this value becomes nearly independent on the presence
of dislocations. Since according to Fig. 7 all four materials
satisfy the Wiedemann-Franz law at very low temperatures
LT — 0) > Ly = 2.44 x 10°® V2 K2, the low temperature
limit of the figure of merit depends only on the Seebeck coef-
ficient, ZT)(T — 0) ~ S*(T)/L,, and hence it decreases to zero as
T — 0, and increases with temperature as seen in Fig. 8 for all
four materials. Remarkably, near room temperature, TaAs
presents ZT®) > 2, which suggests that it could be an excellent
candidate for thermoelectric applications. These findings are
compatible with previous studies that proposed generic semi-
metals for thermoelectric applications due to their relatively
large Seebeck coefficients at room temperature |S| ~ 10> pv
K ',% in agreement with the order of magnitude of our current
estimations for the monopnictides, as well as with independent
estimations for these compounds, reported in the literature*->*
to be in the range |S| ~ 10 to 10° pvV K™ ' at room temperature.

5 Discussion

Our results for the electrical conductivity can be compared with
independent estimations reported in the literature for the
monopnictide family (TaAs, TaP, NbAs and NbP), where
different scattering mechanisms where considered, particularly
the electron-phonon interaction but not the dislocations
studied in our work. The reported values, summarized in Table
1, show that the electrical conductivity is in the range o,, ~ 10*
to 10° Q"' em ™, in agreement in the order of magnitude with
our results in Fig. 4 for an estimated concentration of disloca-
tions nq = 2 x 10° ecm™>.

Our theoretical model is concerned with the role of scat-
tering with the quenched distribution of dislocations, but it
does not include other possible mechanisms, particularly the
electron-phonon scattering. However, its contribution to the
transport relaxation time may be significant as temperature
increases enough to excite the relevant phonon modes. More-
over, the phonon spectrum itself can develop interesting topo-
logical features that may generate novel electron-phonon
scattering mechanisms in WSMs, as discussed for instance in
ref. 46. The latter is an entirely different mechanism, whose
detailed analysis requires a separate model beyond the scope of
the present work. The combination and competition between
both scattering mechanisms can be estimated using Mathies-
sen's rule, such that the overall relaxation time including elec-
tron-phonon scattering would be*”

1 1 1
— = — (42)
Ttot T Te—p

For instance, an estimation of the electron-phonon contri-
bution is reported in ref. 18 and 25 as computed from first
principles for TaAs and NbAs, and NbP respectively. The re-
ported electron-phonon relaxation times at 300 K are on the
order 7., ~ 10~ seconds for all materials.’** In addition, ref.
23 reports an estimated value of the overall relaxation time
(including electron-phonon, impurity and piezoelectric
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scattering) of 7o = 3.01 x 10~ '3 at 300 K,?® which is still on the
same order. In contrast, the calculated transport relaxation
times for the scattering mechanism considered in this work,
assuming a concentration of dislocations of g = 2 x 10° cm >
and displayed in Table 5, are larger, on the order of 10~*>
seconds. However, as shown explicitly in Fig. 2 and 3 for the
transport coefficients, the corresponding values for the relaxa-
tion time are inversely proportional to the concentration of
dislocations, and hence their relative importance in compar-
ison with other possible scattering mechanisms is strongly
determined by this sample-dependent parameter. On the other
hand, electron-phonon scattering is strongly dependent on
temperature, and hence as an estimation we can interpolate it
from its reported value 7._p,(300) at 300 K, using the common
Bloch-Gruneisen expression,” te_pn(T) % (0p/T)*[T5(6Op/T)] "
such that

300\ J5(@p/300)

e—ph T)= e— 300)( — Y 43
(1) = r(00) (P77 TR g

with @y the Debye temperature and the function*

4

X Sd xf < 1
O R e ier=nt A (44)

0 124.431, x>1

In Fig. 9, we represent the transport relaxation time 7., (solid
blue line) for the scattering with dislocations studied in this
work, as a function of their concentration nq, exhibiting the
expected inverse proportionality. For the sake of comparison,
we also present as solid horizontal lines the values for the
electron-phonon scattering relaxation time at three different
temperatures 7._p(7), estimated from eqn (43). As can be seen in
Fig. 9, at 300 K the scattering due to dislocations dominates over
electron-phonon at concentrations ng > 3 x 10'" cm™?, while

-9
— T Te—ph(50) Te—pn(100) — Te_ps(300) ‘ |
— 10 4
© -1
=
o0
°
-12 \
-13
8 9 10 11
logy(na)

Fig. 9 The figure shows the logarithm of the relaxation time 7 (in
seconds) vs. the logarithm of the concentration of dislocations nq (in
cm™?) for the material TaAs. Horizontal lines correspond to the values
of 1e_pn(T) for three different temperatures. The value at T = 300 K is
Te_pn(300) ~ 107** seconds.’® The values at T = 50 K and T = 100 K
were computed using eqn (43), where ®p = 352 K is the experimental
Debye temperature reported for TaAs.**
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the corresponding concentration threshold is given by ng > 2 x
10" ecm 2 at T =100 K, and ng > 6 x 10'° ecm™2 at T = 50 K,
respectively.

Concerning the thermal conductivity, for the sake of
comparison, ref. 23 reports a first principles calculation for the
electronic contribution to the thermal conductivity of TaAs,
including electron-phonon scattering but no dislocations as in
this work. Their result at 300 K is xS = 56.87 WK ' m ', which
is within the range of our calculated values as displayed in Fig. 5
and in Table 7, even when taking into account the anisotropy in
the x- and y-directions already discussed.

Since the contribution from the overall relaxation time tends
to cancel when taking the ratio of the transport coefficients in
eqn (40), the Lorenz number obtained when other scattering
mechanisms are present should still be close to our calculation.
Indeed, ref. 23 also reports a value for the Lorenz number L,(fxl) =
2.27 x 10~% V> K2, which is a small deviation from the Wie-
demann-Franz law, in agreement with our results in Fig. 7.

Finally, in Fig. 8, we display the figure of merit ZT) calcu-
lated from eqn (41), for all different materials as a function of
temperature. At room temperature, NbAs and TaAs exhibit
a comparatively large figure of merit, with ZT&) ~ 2.5 for TaAs,
suggesting that they could be excellent candidates for thermo-
electric applications. We remark that, upon including the
phonon contribution to the total thermal conductivity xpoe =
& + k@ this value will decrease. Indeed, a crude estimation of
this effect may be introduced using the formula

To..

ZT(T) =8> ——*
=5 1)+

(1)=C(T)-ZT“N(T),  (45)
where we defined the correction factor due to the presence of
the lattice conductivity by
CAT) = (1 + 04Dy, (a6)
However, as can be appreciated in Table 1, at 300 K the
lattice thermal conductivities reported in the literature are in
general smaller than their electronic counterparts, with the
exception of TaP, and thus the correction factor is not far from
unity for most cases. Considering our calculated values for the
electronic thermal conductivity (assuming ng =2 x 10° cm™ ') at
300 K presented in Table 7, along with the values for the lattice
thermal conductivity reported in the literature at the same
temperature as displayed in Table 1, we have that for TaAs C; =
(1 +36.06/26.17) " = 0.42, while for NbAs C; = 0.96, indicating
that even when including the phonon effects, the figure of merit
for those two compounds ZT ~ C; x ZT*® = 1 is still compar-
atively large, thus suggesting that they could be very attractive
for thermoelectric applications. Moreover, as the presence of
the torsional dislocations studied in this work will affect the
mechanical properties of the lattice, thus enhancing phonon-
phonon scattering, the lattice thermal conductivity will
decrease in the presence of such defects as compared with the
literature values quoted in Table 1. Therefore, our values for the
figure of merit may actually be closer to reality than our cor-
rected estimations here, but a detailed analysis of phonon
effects is a matter for a separate study. As a final comment, we

© 2024 The Author(s). Published by the Royal Society of Chemistry
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remark that no inter-valley scattering is involved in our analysis,
for two main reasons. First, since the two valleys are well
separated in momentum space, in order to couple them the
potential scattering term must involve momentum exchange at
least of this order of magnitude. On the other hand, in our
formulation of the scattering problem across a single disloca-
tion, the scattering term arises from the elastic gauge field
connection at the same valley as the spinor state being scat-
tered, and hence this constitutes a kinematic constraint pre-
venting inter-valley scattering. Nonetheless, the possibility for
inter-valley scattering cannot be ruled out completely, since
other mechanisms besides the ones considered in this work
may be in place.

6 Conclusions

Along this article, we have presented a theoretical analysis for
thermoelectric transport coefficients in the family of transition
metal monopnictides, when the sole scattering mechanism
considered is the presence of a uniform, diluted concentration
of torsional dislocation defects. Our approach is based on
a combination of Green's functions with a statistical average
over the random distribution of defects, leading to a Dyson
equation with a self-energy in the non-crossing approximation,
enhanced with vertex corrections. Moreover, from the analytical
expressions for the retarded and advanced Green's functions, by
means of general Onsager relations in non-equilibrium ther-
modynamics and the Luttinger formalism to implement the
Kubo formulae, we obtained explicit analytical expressions for
the electrical conductivity, thermal conductivity (electronic
contribution) and Seebeck coefficient. Our analytical expres-
sions are fairly general, and complemented with geometrical
and microscopic parameters obtained from ab initio calcula-
tions, we could evaluate them to estimate the corresponding
values of those transport coefficients for each material as
a function of temperature and concentration of dislocations.
This work provides a first step towards a theoretical analysis of
transport in these systems, and hence we shall not delve into
details concerning the experimental challenges posed, for
instance, by the control of the sign of the charge carriers by
a specific doping mechanism. Indeed, experimental and ab
initio studies suggest that both electron and hole pockets will in
general participate in transport.*® However, recent experimental
studies*” on WSM films reveal that the presence of grain
boundaries (that may play a similar role to our dislocation edges
here) favours spontaneous predominance of holes (positive
charge carriers) with a very high mobility, thus suggesting that
doping may be achieved by defect engineering in these
materials.

As presented in the Results and discussions sections, our
analytical results predict values for the transport coefficients
which are close to those reported in the literature, where
different scattering mechanisms than this one are considered,
particularly the electron-phonon interaction. For this particular
case, we provided quantitative estimations of the range of
temperatures and concentrations where each mechanism may
become dominant. Finally, we remark that our results indicate
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that a high figure of merit is expected for at least two
compounds in the family of transition metal monopnictides, i.e.
TaAs and NbAs, even though our analytical expressions do not
include the contribution from the lattice thermal conductivity.
Nevertheless, based on reported values for this parameter in the
literature, we estimate the order of the correction to our theo-
retical results to include the lattice effects, leading us to
conclude that both TaAs and NbAs could be attractive candi-
dates for thermoelectric applications. In this direction, we
remark that the scattering mechanism analyzed in this work,
i.e. the presence of torsional dislocation defects, introduces
a moderate (as compared to electron-phonon) effect on elec-
tronic transport, whereas it may generate a strong phonon
scattering mechanism decreasing the lattice thermal conduc-
tivity. Therefore, to engineer the concentration of such torsional
dislocation defects in these materials, by decreasing the lattice
thermal conductivity while nearly preserving the values of the
electrical conductivity and Seebeck coefficient, may lead to even
higher figures of merit than predicted here. However, an accu-
rate assessment of the phonon transport mechanisms involved
in this case goes beyond the scope of the present work and is
a matter of outgoing research.
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