Issue 12, 2024

A self-cleaning micro-fluidic chip biospired by the filtering system of manta rays

Abstract

Size-based particle filtration has become indispensable in numerous biomedical and environmental applications. In this study, bioinspired by the filter-feeding mechanism (lobe filtration) of manta rays, we designed a U-shaped biomimetic gill rake filter that combined lobe filtration and Dean flow to filter monodisperse suspensions, bi-disperse suspensions and yeast cells. Compared with other equipment using the inertial focusing technology, our equipment can perform high-throughput (up to 8 mL min−1) and high-efficiency filtration of particles (maximum filtration efficiencies of 96.08% and 97.14% for 10 and 15 μm monodisperse suspensions at the optimum flow rate of 6 mL min−1). The complex velocity field of the micro-fluidic flow within the filter is numerically simulated, and in combination with experiments, a threshold for the flow rate is identified. When the inlet flow rate exceeds the threshold value, the efficiency of particle filtration is increased rapidly. Afterwards, by analysing the filtration mechanism, we develop three novel filtration processes. The equilibrium positions of the particles and yeast cells in the main channel are close to the outer wall at high flow rate, which diminishes the likelihood of particles and yeast cells entering the side channel. This configuration establishes a self-cleaning mechanism, ensuring prolonged and efficient operation of the filter with high-throughput processing. Furthermore, the influence of the filter lobe angle and channel width on the filtration efficiency and outlet flow rate ratio are explored, and an optimisation plan is prepared.

Graphical abstract: A self-cleaning micro-fluidic chip biospired by the filtering system of manta rays

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2024
Accepted
09 May 2024
First published
10 May 2024

Lab Chip, 2024,24, 3064-3079

A self-cleaning micro-fluidic chip biospired by the filtering system of manta rays

X. Hu, L. Yu, Z. Zhu, F. Bao, J. Lin, C. Tu and P. Lin, Lab Chip, 2024, 24, 3064 DOI: 10.1039/D4LC00039K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements