Issue 2, 2024

The high-expression programming of SR-B1 mediates adrenal dysfunction in female offspring induced by prenatal caffeine exposure and its cholesterol accumulation mechanism

Abstract

The cholesterol metabolism and homeostasis of adrenal are important for steroidogenesis. Our previous studies found that prenatal caffeine exposure (PCE) can inhibit adrenal steroidogenesis in offspring, but whether the mechanism is related to local imbalance of cholesterol metabolism remains unknown. Here, we found that PCE inhibited adrenal steroidogenesis and increased the expression of cell pyroptosis and inflammatory-related indicators (NLRP3, caspase-1 and IL-1β) in female adult offspring rats, and at the same time, the cholesterol levels in serum and adrenal gland also significantly increased. In vitro, the high level of cholesterol could inhibit adrenal corticosteroid synthesis through pyroptosis and an inflammatory response. It suggested that the low adrenal steroidogenesis in PCE female adult offspring is related to local cholesterol accumulation-mediated pyroptosis and inflammation. Furthermore, dating back to the intrauterine period, PCE increased the serum CORT level in female fetal rats, and increased the expression of the adrenal cholesterol intake gene SR-B1, which persisted after birth and even into adulthood. At the cellular level, silencing SR-B1 could reverse the increase of intracellular cholesterol content caused by high levels of cortisol in NCI-H295R cells. Finally, we confirmed that high concentrations of glucocorticoids increased the expression and H3K14ac level of the promoter region in SR-B1 by upregulating the GR/SREBP1/p300 pathway in vivo and in vitro. In conclusion, we clarified that the high-expression programming of SR-B1 mediates adrenal dysfunction in PCE female offspring and its cholesterol accumulation mechanism, which provided a favorable basis for finding novel targets to prevent and treat fetal-originated diseases.

Graphical abstract: The high-expression programming of SR-B1 mediates adrenal dysfunction in female offspring induced by prenatal caffeine exposure and its cholesterol accumulation mechanism

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2023
Accepted
03 Dec 2023
First published
09 Dec 2023

Food Funct., 2024,15, 716-731

The high-expression programming of SR-B1 mediates adrenal dysfunction in female offspring induced by prenatal caffeine exposure and its cholesterol accumulation mechanism

X. Xia, Y. Chen, H. Qu, J. Cao and H. Wang, Food Funct., 2024, 15, 716 DOI: 10.1039/D3FO03561A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements