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properties with positive examples
only

Mehrad Ansari and Andrew D. White *

Deep learning can create accurate predictive models by exploiting existing large-scale experimental data,

and guide the design of molecules. However, a major barrier is the requirement of both positive and

negative examples in the classical supervised learning frameworks. Notably, most peptide databases

come with missing information and low number of observations on negative examples, as such

sequences are hard to obtain using high-throughput screening methods. To address this challenge, we

solely exploit the limited known positive examples in a semi-supervised setting, and discover peptide

sequences that are likely to map to certain antimicrobial properties via positive-unlabeled learning (PU).

In particular, we use the two learning strategies of adapting base classifier and reliable negative

identification to build deep learning models for inferring solubility, hemolysis, binding against SHP-2, and

non-fouling activity of peptides, given their sequence. We evaluate the predictive performance of our PU

learning method and show that by only using the positive data, it can achieve competitive performance

when compared with the classical positive–negative (PN) classification approach, where there is access

to both positive and negative examples.
1 Introduction

As short-chain amino acids, peptides have attracted growing
attention in pharmaceutics,1–3 therapeutics,4–6 immunology,7–9

and biomaterials design.10–12 However, the development of
novel peptides remains a challenge due to poor pharmacoki-
netic properties that restrict the design space and necessitate
unnatural amino acids or cyclization, increasing the complexity
of their design.13 Computational design and data-driven
discovery strategies have arisen as promising low-cost tech-
niques in the pre-experiment phase to expedite the process of
generating accurate predictions of peptide properties, and
shortlist promising candidates for follow-up experimental vali-
dation. Some examples of these successful applications include
single nucleotide polymorphisms (SNP) and small-indel
calling,14 estimating the impact of non-coding variants on
DNA-methylation,15 as well as for the prediction of protein
function,16 structure,17,18 and protein–protein interactions.19

Sequence-based learning strategies aim at mapping peptide's
natural biological function to its sequence. In a supervised
learning setting, this is done by training on sequence-function
examples. This means that sequence–function relationships
are learned by iteratively training on samples of different classes
(i.e. positive and negative examples in binary classication). The
performance of the classier is highly dependent on the quality
of the training samples and the ratio of the positive and
rsity of Rochester, Rochester, NY, 14627,

the Royal Society of Chemistry
negative samples.20,21 In bioinformatics, a variety of supervised-
learning algorithms, such as support vector machines,22

random forest,23 logistic regression,24 and naive Bayesian clas-
sier,25 have been successfully applied to develop classication
models.

However, lack of negative examples in numerous biological
applications26–29 limits the feasibility of constructing such reli-
able classiers. As an example, medical information records
typically contain the positively diagnosed diseases of a patient,
and the absence of a diagnostic record does not necessarily rule
out a disease for him/her. Most high-throughput screening
methods solely focus on identifying the positive examples, thus,
it is much more straightforward to conrm a property than to
ascertain that it does not hold. As an example, a potential
binding site is conrmed if a protein binds to a target, but
failure to bind only means that the binding conditions were not
satised under a given experimental setting. With the techno-
logical advances, identifying specic properties can be
improved, and biological samples formerly not known to have
a property can now be classied with condence. As an
example, ref. 30 demonstrated on the changes in protein
glycosylation site labeling throughout four time points over 10
years. Another example is protein–protein interaction (PPI),31,32

where experimentally validated interacting and non-interacting
protein pairs are used as positive and negative examples,
respectively. However, the selection of non-interacting protein
pairs can be challenging for two reasons: (1) as more novel PPIs
are constantly being discovered over time, some non-interacting
protein pairs (i.e. negative examples) might be mislabeled. (2)
Digital Discovery, 2024, 3, 977–986 | 977
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The positive examples are signicantly outnumbered by a large
number of protein pairs for which no interactions have been
identied. Similar situations can be found in drug–drug inter-
action identication,33 small non-coding RNA detection,34 gene
function35,36 and phage–bacteria interaction37 prediction, and
biological sequence classication.38,39

To address the challenges above, we demonstrate on a posi-
tive-unlabeled (PU) learning framework to infer peptide
sequence-function relationships, by solely exploiting the
limited known positive examples in a semi-supervised setting.
Semi-supervised learning techniques are a special instance of
weak supervision,40,41 where the training is based on partially
labeled training data (i.e. labeled data can be either positive or
both positive and negative samples). PU learning builds clas-
sication models by primarily leveraging a small number of
labeled positive samples and a huge volume of unlabeled
samples (i.e. a mixture of both positive (P) and negative (N)
samples).42 Depending on how the unlabeled (U) data is
handled, existing PU learning strategies are divided into two
categories. (1) Reliable negative identication: this category
identies reliable negatives (RN) within U, and then performs
ordinary supervised (PN) learning;43,44 (2) adapting the base
classier: this treats the U samples as N with smaller weights
(biased learning) and adapts the conventional classiers to
directly learn from P and U samples.45,46 The former reliable
negative identication strategies rely on heuristics to identify the
RN, and they have been widely used in none-coding RNA
identication,34 none-coding RNA-disease association,47 gene
function prediction,35,48 disease gene identication,26,49,50 and
single-cell RNA sequencing quality control.51 On the other hand,
adapting the base classier algorithms are Bayesian-based
approaches that focus on estimating the ratio of positive and
negative samples in U (class prior), which then can be applied
for classication using the Bayes' rule. One major limitation is
that their performance largely depends on good choices of
weights of U samples, which are computationally expensive to
tune.52 Thus, compared to the rst strategy, there has been
a fewer use cases of them in the literature.53–56 An excellent
overview of PU leaning strategies can be found in ref. 42 and 20
also systematically reviewed the implementation of 29 PU
learning methods in a wide range of biological topics.

In this work, we take advantage of the exibility of reliable
negative identication PU strategy, and discover peptide
sequences that are likely to map to certain properties (Fig. 1).
Specically, we demonstrate on a two-step technique, where
Step 1 handles the deciency of negative training examples by
extracting a subset of the U samples that can be condently
labeled as N (i.e. RN). Subsequently, step 2 involves training
a deep neural network classier using the P and the extracted
RN, and applying it to the remaining pool of U. Reliable nega-
tive identication in step 1, is an adaption of the Spy technique
formerly employed in handling unlabeled text data.43 In this
approach, some randomly selected positive samples are dened
as spies, and are intentionally mislabeled as negatives. The
reliable negative examples are found within the unlabeled
samples for which the posterior probability is lower than the
posterior probability of the spies. We use our approach to
978 | Digital Discovery, 2024, 3, 977–986
predict different peptide properties, such as hemolysis, resis-
tance to non-specic interactions (non-fouling), and solubility.

This manuscript is organized as follows: in Section 2, we
describe the datasets, architecture of the deep learning models,
and our choices for the hyperparameters. This is followed by
evaluating the model in a comparative setting with the classical
PN classier in Section 3. Finally, we conclude the paper in
Section. 4, with a discussion of the implications of our ndings.

2 Materials and methods
2.1 Datasets

2.1.1 Hemolysis. Hemolysis is referred to the disruption of
erythrocyte membranes that decrease the life span of red blood
cells and causes the release of Hemoglobin. It is critical to
identify non-hemolytic antimicrobial peptides as a non-toxic
and safe measure against bacterial infections. However, dis-
tinguishing between hemolytic and non-hemolytic peptides is
a challenge, since they primarily exert their activity at the
charged surface of the bacterial plasma membrane. In this
work, the hemolysis classier is trained using data from the
Database of Antimicrobial Activity and Structure of Peptides
(DBAASP v3 (ref. 57)). Hemolytic activity is dened by extrapo-
lating a measurement assuming dose response curves to the
point at which 50% of red blood cells are lysed. Activities below
100 mg ml−1, are considered hemolytic. The data contains 9316
sequences (19.6% positives and 80.4% negatives) of only L- and
canonical amino acids. Each measurement is treated indepen-
dently, so sequences can appear multiple times. This experi-
mental dataset contains noise, and in some observations
(∼40%), an identical sequence appears in both negative and
positive class. As an example, sequence “RVKRVWPLVIRTVIA-
GYNLYRAIKKK” is found to be both hemolytic and non-
hemolytic in two different lab experiments (i.e. two different
training examples).

2.1.2 Solubility. This data contains 18 453 sequences
(47.6% positives and 52.4% negatives) based on PROSO II,58

where solubility was estimated by retrospective analysis of
electronic laboratory notebooks. The notebooks were part of
a large effort called the Protein Structure Initiative and consider
sequences linearly through the following stages: selected,
cloned, expressed, soluble, puried, crystallized, HSQC (heter-
onuclear single quantum coherence), Structure, and deposited
in PDB.59 The peptides were identied as soluble or insoluble by
“Comparing the experimental status at two time points,
September 2009 and May 2010, we were able to derive a set of
insoluble proteins dened as those which were not soluble in
September 2009 and still remained in that state 8 months
later.”58

2.1.3 Non-fouling. Non-fouling is dened as resistance to
non-specic interactions, and this data is obtained from ref. 60.
A non-fouling peptide (positive example) is dened using the
mechanism proposed in ref. 61. Briey,61 showed that the
exterior surfaces of proteins have a signicantly different
frequency of amino acids, and this increases in aggregation
prone environments, like the cytoplasm. Synthesizing self-
assembling peptides that follow this amino acid distribution
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of this work. High-throughput screening methods are commonly good at identifying positive examples, leaving imbalanced
datasets (skewed towards the positive class) that are not suitable for supervised learning algorithms. In this work, we use the positive examples
only to distinguish between the positive and negative samples using Spy technique.
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and coating surfaces with the peptides creates non-fouling
surfaces. This pattern was also found inside chaperone
proteins, another area where resistance to non-specic inter-
actions is important.62 Positive data contains 3600 sequences.
Negative examples are based on 13 585 sequences (79.1% of
dataset are negatives) coming from insoluble and hemolytic
peptides, as well as, the scrambled positives. The scrambled
negatives are generated with lengths sampled from the same
length range as their respective positive set, and residues
sampled from the frequency distribution of the soluble dataset.
Samples are weighted to account for the class imbalance caused
by the negative examples dataset size. This dataset is gathered
based on the mechanism proposed in ref. 61.

2.1.4 SHP-2. SHP-2 is a ubiquitous protein tyrosine phos-
phatase, whose activity is regulated by phosphotyrosine (pY)-
containing peptides generated in response to extracellular
stimuli. SHP-2 is involved in processes such as cell growth,
differentiation, migration, and immune response.63 The SHP-2
dataset contains xed-length peptides (5 AA residues) opti-
mized for binding to N-SH2 domain, obtained from ref. 64.
Total dataset size is 300, with 50% positive examples (Table 1).
2.2 Model architecture

We build a recurrent neural network (RNN) to identify the
position-invariant patterns in the peptide sequences, using
a sequential model from Keras framework66 and the TensorFlow
deep learning library back-end.67 In specic, the RNN employs
bidirectional Long Short-Term Memory (LSTM) networks to
capture long-range correlations between the amino acid resi-
dues. Compared to the conventional RNNs, LSTM networks
with gate control units can learn dependency information
© 2024 The Author(s). Published by the Royal Society of Chemistry
between distant residues within peptide sequences more
effectively.68–70 An overview of the RNN architecture is shown in
Fig. 2. This architecture is identical to the one used in our recent
work in edge-computing cheminformatics.65

The input peptide sequences are integer encoded as vectors
of shape 200, where the integer at each position in the vector
corresponds to the index of the amino acid from the alphabet of
the 20 essential amino acids: [A, R, N, D, C, Q, E, G, H, I, L, K, M,
F, P, S, T, W, Y, V]. For implementation purposes during the
training step, the maximum length of the vector is xed at 200,
padding zeros to shorter length sequences. For those sequences
with shorter lengths, zeros are padded to the integer encoding
representation to keep the shape xed at 200 for all examples, to
allow input sequences with exible lengths. Every integer
encoded sequence is rst fed to an embedding layer with
trainable weights, where the indices of discrete symbols (i.e.
essential amino acids), into a representation of a xed-length
vector of dened size.

The embedding layer output either goes to a double stacked
bi-LSTM layer (for solubility and hemolysis) or a single LSTM
layer (for SHP-2 and non-fouling), to identify patterns along
a sequence that can be separated by large gaps. The output from
the LSTM layer is then concatenated with the relative frequency
of each amino acid in the input sequences. This choice is
partially based on our earlier work,64 and helps with improving
model performance. The concatenated output is then normal-
ized and fed to a dropout layer with a rate of 10%, followed by
a dense neural network with ReLU activation function. This is
repeated three times, and the nal single-node dense layer uses
a sigmoid activation function to predict the peptide biological
activity as the probability of the label being positive.
Digital Discovery, 2024, 3, 977–986 | 979
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Table 1 Summary of used datasets. For more details, refer to ref. 65

Hemolysis Solubility Non-fouling SHP-2

Denition Hemolysis is the process by
which red blood cells (RBCs)
rupture and release their
contents, mainly
Hemoglobin, into the
surrounding plasma or
extracellular uid. Based on
DBAASP v3.57

Solubility was dened in
PROSO II58 as a sequence
that was transfectable,
expressible, secretable,
separable, and soluble in E.
coli system

Resistance to non-specic
interactions. Gathered using
the mechanism proposed in
ref. 61

SHP-2 is a protein encoded
by the PTPN11 gene in
humans. It is a non-receptor
protein tyrosine
phosphatase that plays
a critical role in various
cellular signaling pathways63

Total size 9316 18 453 17 185 300
Positive examples 19.6% 47.6% 20.9% 50.0%
Length range 1–190 AA residues 19–198 AA residues 5–198 AA residues 5 AA residues
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The hyperparameters are chosen based on a random search
that resulted the best model performance in terms of the area
under the receiver operating characteristic curve (AUROC) and
accuracy (ACC). Readers are encouraged to refer to ref. 65 for
more details on the model architecture and its hyper-
parameters. We compile our Keras model using Adam opti-
mizer71 with a binary cross-entropy loss function, which is
dened as

� 1

N

XN
i¼1

h
yilog

�byi
�
þ ð1� yiÞ log

�
1� byi

�i
; (1)

where yi is the true value of the ith example, byi is the corre-
sponding prediction, and N is the size of the dataset.
2.3 Positive-unlabeled learning

Let~x be an example, and y ˛ {0, 1} the true binary label for the
instance~x. If~x is a positive example, y= 1, otherwise y= 0. Let s
= 1, if example ~x is labeled, and s = 0, if ~x is unlabeled. Only
positive examples are labeled (i.e. pðs ¼ 1j~x; y ¼ 0Þ ¼ 0). In other
Fig. 2 RNN architecture.65 Padded integer encoded sequences are first fe
representation of the input essential amino acids. The use of bidirection
connected layers, improves the learning of bidirectional dependency betw
down-sized in three consecutive steps via layer normalization and dropo
for the desired training task using a sigmoid activation function.

980 | Digital Discovery, 2024, 3, 977–986
words, the probability that a negative example appears in the
labeled set is zero. On the other hand, the unlabeled set
pðs ¼ 1j~x; y ¼ 0Þ ¼ 0 can contain positive ðy ¼ 1j~x; s ¼ 0Þ or
negative ðy ¼ 0j~x; s ¼ 0Þ examples. The goal is to learn a proba-
bilistic binary classier as a function f ð~xÞ, such that
f ð~xÞ ¼ pðy ¼ 1j~xÞ, i.e. the conditioned probability of being
positive given a feature vector~x.

In this work, we focus on two PU learning strategies;
Adapting Base Classier and Reliable Negative Identication.

2.3.1 Adapting base classier. Adapting base classier, also
known as class prior estimation, are Bayesian-based methods
that adapt the base classier (i.e. SVM) to estimate the expected
ratio of positive or negative examples in the unlabeled set. Note
that in this work, we use an RNN as our base classier. This
approach simply tries to adjust the probability of being positive
estimated by a traditional classier trained with positive and
unlabeled examples, where the unlabeled is treated as the
negative class. The positive likelihood score pðy ¼ 1j~xÞ is esti-
mated by ref. 72 as
d to a trainable embedding layer, yielding a semantically more compact
al LSTMS and direct inputs of amino acid frequencies prior to the fully
een distant residues within a sequence. The fully connected layers are
ut regularization. The final layer outputs the probability of being active

© 2024 The Author(s). Published by the Royal Society of Chemistry
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f ð~xÞ ¼ pðy ¼ 1j ~xÞ ¼ pðs ¼ 1j~xÞ
pðs ¼ 1jy ¼ 1; ~xÞ; (2)

where pðs ¼ 1j ~xÞ is the likelihood of the example ~x being
labeled (thus, being positive), learned from the labeled and
unlabeled data. pðs ¼ 1jy ¼ 1;~xÞ denotes the posterior proba-
bility of the example ~x, i.e. positive sample being labeled as
positive in the training data. Assuming that the labeled positive
samples are chosen completely randomly from all positive
examples, pðs ¼ 1jy ¼ 1; ~xÞ is treated as a constant factor (c) for
all the samples, that can be obtained through a validation (held-
out) set.53 This “selected completely at random” assumption can
be also written as c ¼ pðs ¼ 1jy ¼ 1;~xÞ ¼ pðs ¼ 1jy ¼ 1Þ, where c
is a constant probability that a positive sample is labeled. This
assumption is analogous to the “missing completely at random”
assumption that is made when learning data with missing
values.73–75 Among the empirical estimators for c proposed in 72,
we use the following average:

c ¼ pðs ¼ 1jy ¼ 1Þ ¼
P
x˛R

pðs ¼ 1j~xÞ
P
x˛V

pðs ¼ 1j~xÞ; (3)
where V is the validation set, drawn in the same manner as the
training set, and R 4 V is a set of positive examples in V. A
threshold is adjusted within range (0 − 1/c) to discriminate if
the sample belongs to the positive or negative class, by maxi-
mizing Cohen's kappa coefficient.76 It is important to note that
the 72 algorithm was not developed to handle noisy labeled data.
In addition, the theory behind its estimator limits its use to
classify conditional distributions with non-overlapping
support.77

2.3.2 Reliable negative identication. Reliable negative
identication adopts two independent algorithms: (1) identify
the reliable negatives (RN) within the unlabeled set given the
likelihood and (2) train a binary classier to distinguish the
labeled positive examples from the identied RN set. This
approach is based on two assumptions of smoothness and
separability, which simply means that all the positive examples
are similar to the labeled examples, and that the negative
examples are very different from them, respectively.42 Several
© 2024 The Author(s). Published by the Royal Society of Chemistry
techniques have been proposed to extract the reliable negatives
or positives from the unlabeled set, such as Spy,43 Cosine-Roc-
chio,78 Rocchio,44 1DNF,79 PNLH,80 and Augmented Negatives,81

and DILCA.82

In this work, we use Spy to nd the reliable negatives. First,
a small randomly selected group of positive examples (S) are
removed and put in the unlabeled data as spies. This allows us
to dene new datasets Ps and Us, respectively. The percentage of
positive instances used as spies is dened by spy-rate (in this
work, we use 0.2). Then, a classier f1 is trained based on Ps and
Us. Next, the boundary of RN under the rule that most of the
spies are classied as positives is found, based on spy-tolerance
(3). 3 determines what percentage of spies can remain in the
unlabeled set when the decision boundary threshold (ts) is
calculated (in this work, we use 0.05). In other words, ts is the
posterior likelihood such that all added spies during training f1
are classied as positives. All samples in Us, whose posterior
likelihood is smaller than ts are considered RN. Finally, we train
a new classier f2 given original positive samples (P) and the
found RN.
3 Results and discussion

In this section, we evaluate the estimated generalization error of
our PU approach, and compare it with the classical PN classi-
cation, where both positive and negative examples are avail-
able for training. Note that the test data contains xed
unobserved real positive and negative examples with a consis-
tent ratio across all PN and PU case studies. Thus, regardless of
the size of the unlabeled data generated, the performance
metrics can be fairly compared. We take two approaches to
generate the unlabeled data: (1) unlabeled Data Generated from
Positive and Negatives Samples. In this setting, the unlabeled
data is generated from amixture of known positive and negative
examples for each task. (2) Unlabeled Data Generated from
Mutated Positive Samples. Given a distribution of positive
examples, we generate unlabeled examples by randomly
breaking the positive examples into sub-sequences, and lling
up a similar-length sequence, with these sub-sequences.
Digital Discovery, 2024, 3, 977–986 | 981
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Table 2 Performance comparison between PU learning and classical PN learning for different prediction tasks, with the unlabeled data
generated from positive and negatives samples. PN models are trained by having access to both positive and negative data, based on our earlier
work in ref. 65. The test data contains fixed unobserved real positive and negative examples with a consistent ratio across all PN and PU case
studies

Task PU method

PU PN

ACC (%) AUROC ACC (%) AUROC

Hemolysis Adapting base classier 83.1 0.78 84.0 0.84
Hemolysis Reliable negative identication 84.1 0.80
Non-fouling Adapting base classier 93.8 0.93 82.0 0.93
Non-fouling Reliable negative identication 95.0 0.93
Solubility Adapting base classier 53.0 0.59 70.0 0.76
Solubility Reliable negative identication 86.7 0.68
SHP-2 Adapting base classier 84.1 0.87 83.3 0.82
SHP-2 Reliable negative identication 90.2 0.93
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Duplicate sequence are removed aer the generation step. This
allows us to generate the unlabeled data, by creating mutations
of the positive examples without any knowledge on what the true
negative examples are, thus, making our approach agnostic
with respect to the unknown ground-truth of distribution of the
negative peptide examples in the sequence space.
3.1 Unlabeled data generated from positive and negatives
samples

Performance comparison between our PU learning methods
and classical PN learning for different prediction tasks are
presented in Table 2. Results for all the PN models are based on
our earlier work in ref. 65. For every task, we make comparisons
of the model accuracy (ACC%), and the area under the receiver
operating characteristic curve (AUROC), using the two the
Adapting Base classier, and the Reliable Negative Identica-
tion PUmethods. Across all prediction tasks, with one exception
of Hemolysis and Solubility with the Adapting Base Classier
method, the accuracy of our PU methods are considerably
higher than the PN classication. Comparing the two PU
methods, it is observed that Reliable Negative Identication
outperforms Adapting Base Classier method for all prediction
tasks. Surprisingly, for the non-fouling and SHP-2 predictions,
both PU methods outperform the PN classier.
3.2 Unlabeled data generated from mutated positive
samples

Table 3 shows performance comparison between our PU
learning method and classical PN learning for different
Table 3 Performance comparison between PU learning and classical
generated frommutated positive samples. Generated unlabeled is 8 times
both positive and negative data, based on our earlier work in ref. 65. The t
with a consistent ratio across all PN and PU case studies

Task PU method

PU

AC

Hemolysis Reliable negative identication 76
Non-fouling Reliable negative identication 94
SHP-2 Reliable negative identication 84

982 | Digital Discovery, 2024, 3, 977–986
prediction tasks. Considering the much better performance of
Reliable Negative Identication compared to the Adapting Base
Classier observed in Table 2, we only consider the Reliable
Negative Identication PU method for this unlabeled data
generation scenario. Note that the solubility model in this
setting showed a poor performance, and was excluded in our
comparison. Considering the ACC and AUROC reported in
Table 3, our PU method is able to reasonably discriminate
between the positive and the reliable negatives identied from
the generated unlabeled examples.

It is important to note that with the unlabeled data genera-
tion, we can control how large the size of the generated unla-
beled examples are. The generated unlabeled : labeled ratio
reported in Table 3 is xed at 8.0. Next, we investigate the effect
of unlabeled : labeled ratio on the performance of Reliable
Negative Identication strategy across all prediction tasks in
Fig. 3. Each point represents the average value of AUROC and
ACC% (le and right panel, respectively) over 6 models trained
with a different choice of randomly selected spy positives, and
error bars show the magnitude of the standard deviation.
Horizontal dashed lines show the performance of the PN clas-
sier for each task represented as a baseline for performance
comparison. With very small generated unlabeled samples (i.e.
unlabeled : labeled ratioz2.0), the exploration of new examples
that can qualify as reliable negatives will be largely limited.
Thus, the trained f2 classier has a signicantly lower perfor-
mance compared to the baseline PN classier and to the other
PU models trained with higher generated unlabeled : labeled
ratios. With larger unlabeled : labeled ratios (i.e. >10.0), we see
a better prediction performance across all the tasks. There are
PN learning for different prediction tasks, with the unlabeled data
larger than the positive size. PNmodels are trained by having access to
est data contains fixed unobserved real positive and negative examples

PN

C (%) AUROC ACC (%) AUROC

.8 0.75 84.0 0.84

.1 0.87 82.0 0.93

.8 0.91 83.3 0.82

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Effect of generated unlabeled : labeled ratio on the performance of the Reliable Negative Identification strategy for the three prediction
tasks. Horizontal dashed lines show the performance of the PN classifier from Table 3 used as a baseline for comparison. At the low ratio regime,
the pool of unlabeled data is not big enough to obtain promising candidates as reliable negatives. With larger unlabeled : labeled ratios, the PU
model gets to identify a better choice of sequences as reliable negatives, despite the major existing class imbalance in the traning data.
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two signicant observations; (1) withmore unlabeled sequences
generated, the trained PU models have a competitive perfor-
mance with the PNmodels. In specic, for binding against SHP-
2, we observe that the PU model beats the PN classier in both
AUROC and ACC%. 2. Surprisingly, the PU models become
more condent in their predictions with the increase of the
unlabeled : labeled ratio (compare magnitude of error bars in
Fig. 3). This can bring a major advantage in implementing our
approach in a generative setting, where we can predict the
properties of new peptide sequences without having to worry
much about the class imbalance between the positive and the
negative examples, which can majorly reduce model perfor-
mance, if the learning is supervised.

Comparing AUROC and ACC in Tables 2 and 3, we observe
that Reliable Negative Identication with mutated positive
samples has a relative lower performance compared to the other
scenario, where the unlabeled data is generated from a distri-
bution of positive and negative examples. Despite this minor
lower performance, using the new unlabeled sequence genera-
tion, one can explore the newly unlabeled samples, and make
predictions on peptide properties by only having access to the
examples from one class (i.e. positive). The sequence-based
peptide property prediction in this work is limited to four
different tasks. However, with the positive data available, this
work can be further extended to developing predictive models
for inferring other peptide properties.
© 2024 The Author(s). Published by the Royal Society of Chemistry
4 Conclusions

We have showed a semi-supervised learning framework to infer
the mapping from peptides' sequence to function for properties
such as hemolysis, solubility, non-fouling, and binding against
SHP-2. Our positive unlabeled learning method aims at identi-
fying likely negative candidates (reliable negatives) from the
generated unlabeled sequences, given random permutations of
subsequences within the available positive samples. The reli-
able negative identication strategy is agnostic with respect to
the model architecture used, giving generality. Our method will
be most benecial in biology screening experiments, where
most high-throughput screening methods solely focus on
identifying the positive example. All PU models showed
a comparative predictive ability and robustness across the
different prediction tasks, when compared to training with both
positive and negative examples.

Moreover, our approach is fundamentally agnostic to nega-
tive data, a practical stance considering the rarity of such truly
meaningful data in biological datasets, where typically only
successful experiments are reported, not the failures. PU
learning offers a signicant advantage in such imbalanced
datasets, where the typical approach of oversampling to address
class imbalance can lead to model bias in a supervised learning
setting. This learning strategy can provide a robust feasible path
towards estimating how amino acids positional substitutions
can affect peptide's functional response for unknown
Digital Discovery, 2024, 3, 977–986 | 983
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sequences, enhancing the model's ability to generalize to new
data, and accelerate the design and discovery of novel
therapeutics.

Data and code availability
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