Issue 32, 2024

Electron-driven molecular processes for cyanopolyacetylenes HC2n+1N (n = 3, 4, and 5)

Abstract

Linear carbon series cyanopolyacetylenes (HC2n+1N) (n = 3, 4, and 5) are astromolecules found in the atmosphere of Titan and interstellar media such as TMC-1 (Taurus molecular cloud-1). All these compounds are also detected in IRC + 10 216. In the present work, we comprehensively investigate electron interaction with important cyanopolyacetylene compounds, viz. HC7N (cyano-tri-acetylene), HC9N (cyano-tetra-acetylene), and HC11N (cyano-penta-acetylene). The study covers incident electron energies ranging from the ionization threshold to 5 keV. Various electron-driven molecular processes are quantified in terms of total cross-sections. The quantum spherical complex optical potential (SCOP) is used to determine elastic (Qel) and inelastic (Qinel) cross-sections. Ionization is the most important inelastic effect that opens various chemical pathways for the generation of different molecular species; we computed the ionization cross-section (Qion) and discrete electronic excitation cross-section (ΣQexc) using the complex scattering potential-ionization contribution (CSP-ic) method. The cyanopolyacetylene compounds are difficult to handle experimentally owing to the health risks involved. Therefore, there are no prior experimental data available for these molecules; only Qion have been reported theoretically. Thus, the present work is the maiden report on computing Qel, Qinel, ΣQexc, and QT. In order to provide an alternative approach and further validation of the present work, we employed our recently developed two-parameter semi-empirical method (2p-SEM) to compute Qel and QT. Additionally, we predict the polarizability of the HC11N molecule, which has not been reported in the existing literature. This prediction is based on a correlation study of polarizabilities of molecules with Qion values from the same series of molecules.

Graphical abstract: Electron-driven molecular processes for cyanopolyacetylenes HC2n+1N (n = 3, 4, and 5)

Article information

Article type
Paper
Submitted
04 Jul 2024
Accepted
17 Jul 2024
First published
31 Jul 2024

Phys. Chem. Chem. Phys., 2024,26, 21504-21512

Electron-driven molecular processes for cyanopolyacetylenes HC2n+1N (n = 3, 4, and 5)

P. Mer and C. Limbachiya, Phys. Chem. Chem. Phys., 2024, 26, 21504 DOI: 10.1039/D4CP02665A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements