Charge photogeneration and recombination dynamics in non-fullerene solar cells based on a polymer donor with a mono-fluorinated π-bridge†
Abstract
Non-symmetric fluorine substitution is an important route for designing π-conjugated polymers for high-performance solar cells. However, excited state dynamics in a non-symmetric fluorinated polymer and solar cells are poorly understood. In this work, excited state dynamics in a neat mono-fluorinated polymer (PTzBI-dF) film and blend films (PTzBI-dF:Y6) were studied using time-resolved spectroscopy. For the neat donor film, we found the activation energy of the PTzBI-dF film transiting from radiative states to non-radiative states to be ∼58 meV. Besides, we found that both exciton diffusion coefficient and exciton diffusion length in the PTzBI-dF film are higher than those in the PTzBI-Cl film, which has no fluorinated π-bridge. The high exciton diffusion length of the PTzBI-dF film benefits from its long exciton lifetime (∼327.8 ps), which is much longer than that of the polymer donors such as P3HT and PM6. For PTzBI-dF:Y6 blend films, we found that the energy level offsets of the HOMO (0.13 eV) and LUMO (0.23 eV) are sufficient to dissociate the acceptor and donor excitons, respectively. Besides, we found that carrier recombination in PTzBI-dF:Y6 and PTzBI-Cl:Y6 blend films are dominated by bimolecular recombination processes, and thermal annealing treatment has a weak influence on the charge photogeneration and recombination process of the PTzBI-dF:Y6 film at an ultrafast time scale. Thus, this work is helpful for understanding photoelectrical conversion processes in non-symmetric fluorinated polymer-based solar cells.