Temperature-dependent decomposition of the CL-20/MTNP cocrystal after phase separation†
Abstract
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)-based cocrystals are attractive energetic cocrystals with a potential for high energy and low sensitivity, which account for nearly one-third of energetic cocrystals. The applications of cocrystal explosives require in-depth understanding of their thermal kinetics behaviors. Although thermal kinetics of the decomposition of CL-20-based cocrystals having no melting point have been studied, relevant research of CL-20-based cocrystals having a melting point, which are also the most frequently observed type, is still rare. In this study, the CL-20/MTNP (1-methyl-3,4,5-trinitropyrazole) cocrystal was chosen as a typical CL-20-based cocrystal having a melting point to investigate its thermal kinetics behavior. The thermal decomposition of CL-20/MTNP was identified to be a typical heterogeneous reaction with phase separation before decomposition. Due to the presence of intermolecular hydrogen bonds between CL-20 and molten MTNP after phase separation, the thermal decomposition behavior of CL-20/MTNP was strongly temperature-dependent. The complex decomposition reaction was separated into its three constituent pathways to simplify the kinetic analysis. On the basis of in-depth understanding of the decomposition process, the best functions of mechanism and kinetic parameters for each process of CL-20/MTNP decomposition were obtained using the model-fitting method. Finally, important thermal safety indicators, such as TMRad and SADT were simulated by combining the established kinetic models. This study provides further insights into the entire reaction process of the CL-20/MTNP cocrystal and would help in its better applications.