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Can tunneling current in molecular junctions be
so strongly temperature dependent to challenge a
hopping mechanism? Analytical formulas answer
this question and provide important insight into
large area junctions

Ioan Bâldea

Analytical equations like Richardson–Dushman’s or Shockley’s provided a general, if simplified concep-

tual background, which was widely accepted in conventional electronics and made a fundamental con-

tribution to advances in the field. In the attempt to develop a (highly desirable, but so far missing)

counterpart for molecular electronics, in this work, we deduce a general analytical formula for the tun-

neling current through molecular junctions mediated by a single level that is valid for any bias voltage

and temperature. Starting from this expression, which is exact and obviates cumbersome numerical inte-

gration, in the low and high temperature limits we also provide analytical formulas expressing the

current in terms of elementary functions. They are accurate for broad model parameter ranges relevant

for real molecular junctions. Within this theoretical framework we show that: (i) by varying the tempera-

ture, the tunneling current can vary by several orders of magnitude, thus debunking the myth that a

strong temperature dependence of the current is evidence for a hopping mechanism, (ii) real molecular

junctions can undergo a gradual (Sommerfeld–Arrhenius) transition from a weakly temperature depen-

dent to a strongly (‘‘exponential’’) temperature dependent current that can be tuned by the applied bias,

and (iii) important insight into large area molecular junctions with eutectic gallium indium alloy (EGaIn)

top electrodes can be gained. E.g., merely based on transport data, we estimate that the current carrying

molecules represent only a fraction of f E 4 � 10�4 out of the total number of molecules in a large area

Au–S–(CH2)13–CH3/EGaIn junction.

1 Introduction

Although representing only a small fraction compared to the
overwhelming majority of studies conducted at room tempera-
ture, a number of investigations on charge transport in mole-
cular junctions at variable temperature have been carried out in
the past.1–35 Charge flow through molecular junctions can
occur via a single-step tunneling mechanism or via a two-step
hopping mechanism. Whether the measured current depends
on temperature or not is taken by conventional wisdom as an
expedient criterion to assign a specific case to hopping or
tunneling, respectively. Presumably the reason why experimen-
talists resort(ed) to this pragmatic criterion can easily be
understood. Most model theoretical approaches36–43 were
developed for zero temperature (T = 0) and, if at all and even

if deduced for T = 0, compact analytical formulas enabling
straightforward I–V data fitting are rather scarce.39,43–45

A temperature dependence of the tunneling current (I) can
arise due to the thermal broadening of the electronic Fermi
distribution in electrodes. Recognizing this fact, several investiga-
tions drew attention that temperature dependent transport prop-
erties are compatible with a tunneling mechanism.1,8,23,26,32,46–53

Still, a fundamental question remains to be addressed: is the
smearing of electrodes Fermi distribution sufficient to cause a
temperature dependence strong enough to compete with that
generated by hopping, which is known to yield currents exhibit-
ing an exponential Arrhenius-type variation over several orders
of magnitude? From a pragmatic standpoint, equally important
is another question: is it possible to meet the experimentalists’
legitimate need of having compact theoretical formulas expres-
sing the tunneling current at arbitrary temperature obviating the
cumbersome numerical integration (see eqn (4) below)?

In Section 2, an analytical exact formula will be presented
which enables to express the tunneling current (I) mediated by

Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120

Heidelberg, Germany. E-mail: ioan.baldea@pci.uni-heidelberg.de;

Fax: +49 6221 545221; Tel: +49 6221 545219

Received 17th October 2023,
Accepted 7th December 2023

DOI: 10.1039/d3cp05046g

rsc.li/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 0
8 

D
ec

em
be

r 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

17
/2

02
5 

1:
46

:2
0 

PM
. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0003-4860-5757
http://crossmark.crossref.org/dialog/?doi=10.1039/d3cp05046g&domain=pdf&date_stamp=2024-02-07
https://rsc.li/pccp
https://doi.org/10.1039/D3CP05046G
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP026008


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 6540–6556 |  6541

a single level at any temperature and bias in terms of digamma
functions of complex argument. Based on that formula, we will
show that I can indeed vary over several orders of magnitudes
(Section 4), making discrimination between tunneling and
hopping a challenging matter (see Conclusion). We will also
deduce analytical formulas for the current expressed in terms
of elementary functions valid in the low and high temperature
limits (Section 3); they turn out to be very accurate in very broad
model parameter ranges (Section 5), complementary covering
virtually all situations of interest for real molecular junctions.

As an application, starting from experimental current–voltage
data measured for a real molecular junction,54 we will illustrate
(Section 7) how a (Sommerfeld–Arrhenius52) transition from a
current weakly varying with temperature at low T to a strongly
temperature current at high T can be be controlled by tuning the
applied bias voltage within a ‘‘tunneling-throughout’’ scenario.

As a by-product, we show how the presently considered
single-level model of transport can provide important insight
into large area molecular junctions with eutectic gallium
indium alloy (EGaIn) top electrodes.

2 Model and exact formula for the
current at arbitrary temperature

The Keldysh nonequilibrium formalism allows to express the
tunneling current through a single molecule mediated by a
single level (molecular orbital, MO) of energy eV by36,55

I ¼ N
2e

h

ð1
�1

GsGt G eð Þj j2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
TðeÞ

f e� msð Þ � f e� mtð Þ½ �de (1)

where f ðeÞ ¼ 1þ exp
e

kBT

� �� ��1
is the Fermi–Dirac distribu-

tion, and ms,t = �eV/2 are the chemical potentials of the
electrodes (‘‘substrate s and ‘‘tip/top’’ t).

Key quantities in the above equation are the MO-electrode
electronic couplings Gs,t, which also enter the retarded Green’s
function G of the embedded molecule via Dyson’s equation

G�1ðeÞ ¼ e� eV þ
i

2
ðGs þ Gt þ GenvÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�S

(2)

We emphasize that although for the sake of convenience we will
simply write eV almost everywhere, various forward-backward
asymmetries can yield a bias dependent MO energy offset, e.g.

eV - e0(V) = e0 + geV (3)

and all the formula presented below hold for a general bias
dependent quantity e0(V) not even restricted to the (linear in V)
form mentioned above.

Notice that, along with electrodes’ contribution Gs,t, we have
also included in the Dyson eqn (2) an additional (‘‘extrinsic’’)
contribution to the self-energy expressed via Genv. This is
requested by the physical reality. Except for genuine single-
molecule setups—e.g., mechanically controlled break junctions
(MC-BJ)—, the current carrying molecules are placed in an

environment. In interaction with the surrounding—whether
molecules of a solvent, neighboring molecules from a self-
assembled monolayer, possibly also interaction in a cavity---the
sharp delta-shape MO of an isolated molecule (gas phase)
acquires a finite width quantified by Genv. The Green function
G of eqn (2) may refer to a molecule linked to one electrode
(Gt � 0)—the case in a ultraviolet photoelectron spectroscopy
(UPS) ‘‘half-junction’’ setup—or linked to two electrodes—the
case of molecular junctions, whatever the (coherent one-step
tunneling or incoherent two-step sequential) transport mecha-
nism; it does not matter, a nonvanishing Genv can exist in all
these cases.

Noteworthily, this reality needs not be accounted for phe-
nomenologically. Whether referring to an UPS setup or to a
molecular junction under bias the retarded Green’s function
(within an equilibrium formalism56 or in a nonequilibrium
Keldysh formalism,36,55 respectively) can naturally account for
this reality. In the Dyson eqn (2) underlying the present single
level model, Gs,t and Genv are accounted for on the same
footing.

The assumption of a self-energy S independent of energy
(e)—which underlines the ubiquitous Lorentzian transmission
T(e)—is legitimate in the case of metal electrodes possessing
flat energy bands and environments without special features
around the Fermi energy. In the same vein and for the sake of
simplicity, we did not explicitly consider interactions of the
envisaged molecule with electrodes and surrounding (see
above) yielding a nonvanishing contribution to the real part
of the self-energy S in eqn (2). All these effects amount to
renormalize the value of e0 entering eqn (3).

I ¼ 2e

h
G2

ð1
�1

f e� msð Þ � f e� mtð Þ
e� eVð Þ2þL2

de (4)

G2 � GsGt = Gg
2 (5)

L � 1

2
Gs þ Gt þ Genvð Þ ¼ Ga þ

Genv

2
(6)

Notice that, after replacing Ga by L, all formulas presented in
our earlier works (e.g., ref. 43, 52, 53 and 57) in terms of the
geometric (‘‘effective’’) and arithmetic average (Gg and Ga)
remain valid although a possible contribution of the surround-
ing environment to the MO width (Genv) has not been explicitly
mentioned. To avoid possible confusions (see ref. 58 and 57),
we reiterate that the presently defined G’s may differ by a factor
of two from quantities denoted by the same symbol by other
authors.

Expressed as product of a Lorentzian and a difference of
Fermi function, the integrand entering eqn (4) is similar to that
encountered in other phenomena (e.g., superconductivity59 or
charge density waves60) for which contour integration is known
to yield exact formulas expressed in terms of Euler’s digamma
function c of complex argument z (c(z) � dG(z)/dz, G being
here Euler’s gamma function). Integration of eqn (4) can be
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carried out exactly and leads to the following form

I ! Iexact ¼
2e

h

G2

L
Imc

1

2
þ L
2pkBT

þ i
eV þ eV=2

2pkBT

� ��

� Imc
1

2
þ L
2pkBT

þ i
eV � eV=2

2pkBT

� �� (7)

Noteworthily, eqn (7) is exact at arbitrary temperature T and
bias V within the single level model with Lorentzian transmis-
sion. Limitations of this model have been discussed
recently57,61 and will not be repeated here. The above
formula generalizes various particular results deduced for
Genv � 0,8,25,40,41,43,55,62–64 to which we will also refer below.

Putting in more physical terms, thermal fluctuations give rise
to smeared Fermi distributions fs,t(e) = f (e� ms,t) in electrodes that
appreciably differ from the zero temperature step (Heaviside)
shape within ranges of width on the order of kBT around the
electrochemical potentials ms,t = �eV/2 (Fig. 1a). The temperature
has a negligible impact on situations wherein the energy e0 of
dominant transport channel lies far away from resonance (curves
1 and 2 in Fig. 1b). However, the tunneling current can acquire a
significant dependence on temperature in cases where a narrow
enough transmission curve (i.e., sufficiently small L) appreciably
overlaps with one of the two energy ranges affected by thermal
smearing (curves 3 and 4 in Fig. 1b and c). More precisely, the
temperature effect is stronger in situations slightly below reso-
nance (eV t ms, curve 4 in Fig. 1c) than slightly above resonance
(eV \ ms, curve 3 in Fig. 1b and c). As illustrated in Fig. 1c, in the
former case the current I(-Iexact) at temperature T can be sub-
stantially larger than the current at T = 0 denoted by I0K below (cf.
eqn (8a)), while in the latter case I is at least half the value of I0K.

3 Analytical expressions in the low and
high temperature limits
3.1 Current of low temperatures

The zero temperature limit (I E I0K) of eqn (7)

I
T!0

I0K¼
G0

e

G2

L
arctan

eVþeV=2

L
�arctan

eV�eV=2

L

� �
(8a)

is recovered using the asymptotic expansion (eqn (6.3.18)

in ref. 65)

cðzÞ z!1
argzj jop

lnzþO 1=zð Þ

along with the identity

Im lnðxþ iyÞ¼arctan
y

x

An important case of the low temperature limit is the off-
resonant transport, for which eqn (8a) acquires a particularly
appealing form43,57

I0K
L� e0j j

eV�eV=2j j�L
I0K ;off ¼

2e2

h

G2

eV2�ðeV=2Þ2
V (8b)

Low temperature (thermal) corrections to current can be
deduced by expanding the digamma function in powers T65,66

or via Sommerfeld expansions67,68

I ¼ Il;1þO kBTð Þ4;I ¼ Il;2þO kBTð Þ6

I ¼ Il;3þO kBTð Þ8
(9a)

I 	 Il;1¼ I0Kþ
2e

h
G2 c1 eVþeV=2;L;Tð Þ½

�c1ðeV�eV=2;L;TÞ�ðpkBTÞ2
(9b)

I 	 Il;2 ¼ Il;1þ
2e

h
G2 c2 eVþeV=2;L;Tð Þ½

�c2ðeV�eV=2;L;TÞ�ðpkBTÞ4
(9c)

I 	 Il;3 ¼ Il;2þ
2e

h
G2 c3 eVþeV=2;L;Tð Þ½

�c3ðeV�eV=2;L;TÞ�ðpkBTÞ6
(9d)

where

c1ðe;G;TÞ¼�
1

3

e

e2þG2ð Þ2
(9e)

c2ðe;G;TÞ¼�
7

15

e e2�G2
� �
e2þG2ð Þ4

(9f)

Fig. 1 (a) A nonvanishing temperature smears out the electrode Fermi distributions. (b) Negligible far away from resonance (curves 1 and 2), the effect of
thermal broadening becomes important when the transmission peak comes into resonance with the electrochemical potential of one electrode (curve
3). (c) Thermal effects are more pronounced below resonance (curve 4) than above resonance (curve 3) because the overlap is larger in the former case.
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c3ðe;G;TÞ¼�
31

63

e 3e4�10e2G2þ3G4
� �

e2þG2ð Þ6
(9g)

3.2 Current at high temperatures

The identity (cf. eqn (6.3.12) of ref. 65)

Imc
1

2
þ iy

� �
¼ p

2
tanh py

yields the formula for current valid in the high temperature

limit L� pkBT ; I ¼ IT þ O
L

kBT

� �� �

I
L�pkBT

IT

IT �
2e

h

G2

L
p
2

tanh
eV þ eV=2

2kBT
� tanh

eV � eV=2

2kBT

� � (10a)

IT
ejV j�2 e0j j2e

h

G2

L
p
sinh

eV

2kBT

cosh
eV
kBT

 								kBT�ejV j�2 e0j j
Ip:A

Ip:A ¼
2e

h

G2

L
p exp � eVj j � jeV j=2

kBT

� �
signV

(10b)

Above, the subscript p.A stands for ‘‘pseudo-Arrhenius’’ to
emphasize that, in the limit specified, the tunneling current
exhibits an Arrhenius-type dependence on temperature, which
is routinely (or, better, ‘‘abusively’’, see Introduction) consid-
ered characteristic for the hopping mechanism.

Series expansion in powers of x � L/(2pkBT) in terms of
polygamma functions c(n;z) � dnc(z)/dzn

Imc
1

2
þ xþ iy

� �
¼ p

2
tanhpyþ xImc 1;

1

2
þ iy

� �

þ x2

2
Imc 2;

1

2
þ iy

� �
þ O x3

� � (10c)

allows to deduce corrections to eqn (10a). Unlike the imaginary
part of the tetragamma function (c00(z) � c(2;z)), which can be
expressed analytically in terms of elementary functions for z =
1/2 + iy

Imc 2;
1

2
þ iy

� �
¼ d2ðyÞ � �p3

sinh py

cosh3 py
(10d)

the imaginary part of the trigamma function (c0(z) � c(1;z))
entering eqn (10c) cannot. However, we found that it can be
accurately interpolated numerically (see Fig. 2a)

Im c 1;
1

2
þ iy

� �
’ d1ðyÞ

� �y 1

0:958287þ y2
þ 0:944894

0:244104þ y2ð Þ2

" #

(10e)

We thus arrive at the following expressions applicable for MO
broadening smaller that the thermal smearing of electrode
Fermi functions (quantified by L smaller than kBT) characteriz-
ing transport data that exhibit a pronounced temperature

dependence

I ¼ Ih;1 þ O
L

kBT

� �2

; I ¼ Ih;2 þ O
L

kBT

� �3

(10f)

I 	 Ih;1

¼ IT þ
2e

h

G2

L
L

2pkBT
d1

eV þ eV=2

2pkBT

� ��
� d1

eV � eV=2

2pkBT

� ��
(10g)

I 	 Ih;2

¼ Ih;1 þ
2e

h

G2

L
L

2pkBT

� �2

d2
eV þ eV=2

2pkBT

� ��
� d2

eV � eV=2

2pkBT

� ��
(10h)

Notice that, similar to c1,2,3 (cf. eqn (9e)), the quantities d1,2

are expressed in terms of elementary functions (cf. eqn (10e)
and (10d)). This is important for potential applications to
processing transport data exhibiting substantial dependence
temperature; special functions (digamma c in this specific
case) of complex argument (cf. eqn (7)) are not implemented
in software packages (like ORIGIN or MATLAB) routinely uti-
lized by experimentalists for data fitting.

3.3 Analytical expressions for the zero bias conductance

In the zero bias limit (V - 0), eqn (7) recovers the recently
deduced formula for the exact ohmic conductance G.52 It is
expressed in terms of the trigamma function (c0(z) = dc(z)/dz)

G! Gexact �
@Iexact
@V






V¼0

¼ G0
G2

2pLkBT
Re c0

1

2
þ Lþ ie0

2pkBT

� �
(11a)

Fig. 2 The deviations of the numerical interpolation functions (a) d2(y) of
eqn (10e) and (b) j(x) of eqn (11k) from Imc0(1/2 + iy) and Rec(2; 1/2 + iy),
respectively are smaller than half of percent.
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Thermal corrections to the zero temperature conductance
G0K

G 		!T¼0 G0K � G0
G2

e02 þ L2
(11b)

obtained from the asymptotic expansion of the digamma
function read

G = G0K + O(kBT)2 (11c)

G ¼ Gl;1 þ O kBTð Þ4;

G 	Gl;1 ¼ G0K þ G0G21

3

3e02 � L2

e02 þ L2ð Þ3
pkBTð Þ2

(11d)

G ¼ Gl;2 þ O kBTð Þ6;

G 	Gl;2 ¼ Gl;1 þ G0G2 7

15

5e04 � 10e02L2 þ L4

e02 þ L2ð Þ5
pkBTð Þ4

(11e)

G = Gl,3 + O(kBT)8; (11f)

G 	 Gl;3 ¼ Gl;2 þ G0G231

21

7e06 � 35e04L2 þ 21e02L4 � L6

e02 þ L2ð Þ7
pkBTð Þ6

(11g)

Analytical expressions in the high temperature limit (L smaller
than pkBT) deduced previously52,53 are included for the reader’s
convenience (y � e0/(2pkBT))

G
L�pkBT

GT � G0
pG2

4LkBT
sech2ðpyÞ

GT 					!pkBT� e0j j
G0

pG2

LkBT
exp � e0j j

kBT

� � (11h)

G ¼ Gh;1 þ O
L

pkBT

� �
;

G 	Gh;1 � GT þ G0G2 jðyÞ
2pkBTð Þ2

(11i)

G ¼ Gh;2 þ O
L

pkBT

� �2

;

G 	Gh;2 � Gh;1 þ G0G2 p
16

L

kBTð Þ3
� 2� coshð2pyÞ½ �sech4ðpyÞ

(11j)

Rec 2;
1

2
þ iy

� �
’jðyÞ � y2 � 34:7298

y2 þ 2:64796ð Þ2

þ 37:262
y2 þ 1:12874

y2 þ 2:17786ð Þ3

þ 3:01373
y2 � 0:082815

y2 þ 0:25014ð Þ3

(11k)

The high accuracy of the numerical interpolation expressed by
eqn (11k) is depicted in Fig. 2b.

4 Can the temperature impact on the
transport by tunneling be as strong as
on the transport by hopping?

To reiterate what we have mentioned in Section 2, all the above
analytical formulas deduced for the tunneling current hold for
MO energy offsets e0(V) exhibiting an arbitrary dependence on
the applied bias V, including in particular the case of nonvan-
ishing Stark strengths g a 0. In this section, for simplicity, we
confine ourselves to present numerical results for the bias
independent case (e0(V) = e0, g = 0). Because the charge
conjugation invariance of this model yields equal currents
computed for +e0 and �e0 and symmetric I–V curves (I(�V) =
�I(V)), we can restrict ourselves to positive e0 and V without loss
of generality.

As said, traditionally a strongly temperature dependent
transport was considered as a fingerprint for a hopping mecha-
nism, but we showed above that the thermal broadening of
electron Fermi distributions in electrodes makes the tunneling
current dependent on temperature (see also Fig. 3). Can the
tunneling current expressed by the above formulas vary over
orders of magnitude if the temperature varies within experimen-
tally relevant ranges, challenging thereby the hopping mecha-
nism or the occurrence of a tunneling-hopping transition?

The numerical results collected in Fig. 4 offer the (positive)
answer to this question. The first and second columns of Fig. 4
(panels a to d and e to h, respectively) depict the thermal excess
quantified by the ratio of the exact conductance Gexact

(eqn (11a)) and the exact current Iexact (eqn (7)) computed at
T = 373.15 K (kBT = 32.2 meV) and several biases (V = 0.1; 0.5; 1.0 V)
and their counterparts G0K and I0K at the same biases but at T = 0
(eqn (11b) and (8a), respectively) for the model parameter ranges

Fig. 3 Currents at T = 298.15 K (solid lines) and T = 0 (dashed lines)
normalized at the plateau value L/(pG2) for various values of L in (a) linear
and (b) logarithmic y scale. For clarity, in panel a they are shifted vertically
as indicated in the legend.

PCCP Paper

Pu
bl

is
he

d 
on

 0
8 

D
ec

em
be

r 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

17
/2

02
5 

1:
46

:2
0 

PM
. 

View Article Online

https://doi.org/10.1039/D3CP05046G


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 6540–6556 |  6545

1 meV r e0 r 1.5 eV and 0.001 meV r L r 50 meV. (We chose
T = 373.15 K for illustration, as a reasonable value for the highest
temperature of any practical interest.) Inspection of these panels
indicates a current thermal enhancement up to three to four
orders of magnitudes for a sufficiently small L and MO level
outside the Fermi window but no very far away from resonance
(say, e|V|/2 o |e0| t e|V|/2 + 10kBT).

To avoid misunderstandings related to the appearance of
Fig. 4, we emphasize that, unlike the current thermal excess

Iexact/I0K, which is highly asymmetric around resonance—very
large below resonance (Iexact/I0K c 1 for e|V|/2 t |e0|) but not
too small above resonance (1 4 Iexact/I0K 4 1/2 for e|V|/2 \

|e0|)—the absolute difference |Iexact � I0K| is practically sym-
metric around resonance (e|V|/2 = |e0|); compare Fig. 4 with
Fig. 5. Along with the strong thermal enhancement, convincing
oneself that the conductance/current are reasonable large to be
measurable in the pertaining model parameter ranges is an
equally important aspect that deserves consideration.

Fig. 4 (a)–(h) Ratio of the relevant transport properties (conductance Gexact and current Iexact) computed at T = 373.15 K and values of bias V indicated relative to
their counterparts at T = 0 K (G0K and I0K, respectively). The model parameter L is depicted both in linear and (to better visualize the order of magnitude) logarithmic
scale (panels a to d and e to h, respectively). By and large, the main effect of the bias V is a horizontal energy shift eV/2 of the parameter ranges corresponding to
substantial thermal enhancement, which becomes more pronounced as the resonance (e0 = eV/2) is approached from below (e0 \ eV/2). Diagrams for the zero
bias conductance in nS (i) and (j)–(l) current in nA at T = 373.15 K. The parameter regions wherein Gexact 4 1 pS (panel i) and Iexact 4 10 pA (panels j–l), which can be
considered reasonable lower bound values for experimental accessibility, lie below the solid and dashed lines. See the main text for details.
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Therefore, Fig. 4 also indicates the parameter ranges wherein
the values G and I are larger than 1 pS and 0.01 pS, and 10 pA
and 0.1 pA, respectively. These values correspond to the regions
above the continuous and dashed lines depicted in panels e to l.
(We do not show these lines in panels a to d because the linear y-
scale would make visibility problematic.) Above, the larger values
1 pS and 10 pA were chosen as realistic lowest values still
measurable for single molecule junctions. The values one hun-
dred times lower (0.01 pS and 0.1 pA) can be taken as the
counterpart for CP-AFM junctions, which consist of B100 mole-
cules per junction.69

To sum up, we conclude that the impact of temperature on
the transport via a single step tunneling mechanism can
definitely be as strong as that the impact on the two-step
hopping mechanism, which was traditionally associated to a
pronounced temperature dependence.

5 How accurate are the analytical
approximations expressed in terms of
elementary functions?

To illustrate the accuracy of the approximate formulas for
conductance and current deduced in Section 3.3, we present
comparison with the exact eqn (11a) and (7) at T = 373.15 K at
several biases: V = 0; 0.1; 0.5; 1.0 V (Fig. 6–9, respectively).

Methodologically, performing (Sommerfeld) expansions in
powers of T (more precisely, in even powers of T because odd
powers do not contribute) is the most straightforward way to
account for thermal effects on the tunneling current.67,68 Doing
so, eqn (9b)–(9d) and (11d)–(11f) can be recovered after some
tedious calculations. Inspection reveals that, including the first
order correction (pT2), Gl1, and Il,1 represent a better description
with respect to the zero temperature quantities G0K and I0K;
compare Fig. 6b, 7b, 8b and 9b with Fig. 6a, 7a, 8a and 9a,
respectively. Still, although the second order correction (pT4)
depicted in Fig. 6c, 7c, 8c and 9c represents a further improvement,
expansion in powers of kBT/L inherently fails for sufficiently small
L, when the transport strongly depends on temperature.

Unfortunately, although appealing simple, the expressions
for GT and IT deduced in the high temperature limit (eqn (11h)
and (10a)) appear to have a very restricted validity; see Fig. 6d, 7d,
8d and 9d. Below resonance, IT is only reasonably in a very narrow
parameter range. And yet, the formulas deduced by adding first
and second high temperature corrections (Gh,1, Gh,2, eqn (11i) and
(11j)) and Ih,1, Ih,2, (eqn (10g) and (10h)) turn out to be very
accurate even in the parameter ranges where the thermal impact
is very pronounced; see Fig. 6e, f, 7e, f, 8e, f, and 9d, f.

Although the main aim of the present paper is to present
general analytical formulas for the current through molecular
junctions mediated by a single (dominant) channel rather than
discussing applications to real junctions, in the next two
sections we will analyze I–V curves measured for junctions
fabricated using two extreme platforms: a large area junction
with top electrode of eutectic gallium indium alloy (EGaIn)70

(Section 6) and a single-molecule junction54 (Section 7).

6 Analyzing transport data of a specific
large area EGaIn-based molecular
junction

In the above presentation, emphasis was on the temperature
dependence of the tunneling current. However, we also want to
draw attention on an effect that did not explicitly entered the
foregoing discussion: the possibility that the MO of the active
molecule acquires a significant width from the surrounding
medium (Genv a 0). Furthermore, by focusing on a specific large
area EGaIn junction below, we also aim at illustrating that/how
the single level model can help to determine the fraction f of the
current carrying molecules Neff, which represent only tiny
amount of the total (nominal) number of molecules Nn in
junction (f � Neff/Nn { 1).21,71–74 To better underline the
importance of the aforementioned, we have intentionally chosen
experimental results reported for a real junction wherein the
impact of temperature is negligible (cf. Fig. 10c): a large
area EGaIn-based junction fabricated with 1-tetradecanethiol
SAMs (C14T) chemisorbed on gold electrode Au–S–(CH2)13–
CH3/EGaIn.70 Typically, experiments on large area molecular
junctions report values for the current density J = J(V)
(in A cm�2) rather than I = I(V) (in A). For this reason, we
recast eqn (7), (8a) and (8b) needed below in terms of current
densities

Jexact �
Neff

An
Iexact ¼ G2G0

eL
Imc

1

2
þ L
2pkBT

þ i
eV þ eV=2

2pkBT

� ��

� Imc
1

2
þ L
2pkBT

þ i
eV � eV=2

2pkBT

� ��
(12a)

J0K ¼ �G2G0

eL
arctan

eV þ eV=2

L
� arctan

eV � eV=2

L

� �
(12b)

J0K;off ¼ G0

�G2

eV2 � ðeV=2Þ2
V (12c)

Here

�G2 � Neff

An
G2 ¼ Neff

Nn|{z}
f

Nn

An|{z}
S

G2 ¼ fSG2 (13)

and S is the SAM coverage. Recall that eV entering eqn (6) is a
shorthand for e0(V), cf. eqn (3).

Reliable values of the parameters e0
�G, and g can be obtained

by fitting the experimental I–V data with any of eqn (6), the
pertaining results are presented in Table 1 and Fig. 10. Note-
worthily, as reiterated again and again,47,57,58 to correctly
employ our model proposed in ref. 43, eqn (12c) should be
applied to bias ranges |V| t 1.2Vt (cf. Fig. 10d). Here, the
transition voltage Vt is defined as the bias where V2/|I| is
maximum (Fig. 10a). All three fitting curves successfully repro-
duce the measurements (cf. Fig. 10b). The good agreement
between these methods demonstrates that in the large area
Au-C14T/EaGaIn considered thermal effects are negligible
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( j0K E jexact, cf. Fig. 10c), and that the transport in off-resonant
situations can be reliably described by j0K,off (E jexact, see green
curve in Fig. 10b).

6.1 Working equations for large area EGaIn junctions

Let us first recast eqn (5), (6) and (13) in a form more specific
for junctions whose molecules are chemisorbed on a gold
substrate (label c,Au) and physisorbed on EGaIn top electrode

(label p,EGaIn) or CP-AFM gold tip (label p,Au)

G2 ! Gc;Aujp;EGaIn
2 ¼ Gc;AuGp;EGaIn ¼

�G2

fS
(14a)

Gp;EGaIn ¼ Gc;Au
Gp;Au

Gc;Au|fflffl{zfflffl}
r1¼1=37

Gp;EGaIn

Gp;Au|fflfflfflffl{zfflfflfflffl}
r2¼1=7

(14b)

Fig. 5 Unlike the relative deviations depicted in Fig. 4, the absolute deviations of I0K from Iexact are nearly symmetric around resonance |e0| = e|V|/2. This
is illustrated here for two bias values: (a) V = 0.5 V and (b) V = 1.0 V.

Fig. 6 Percentage deviations of the zero bias conductance computed by the various methods indicated in each of the panels a to g with respect to the
value computed exactly at T = 373.15 K.
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(from ref. 53)

Gc;Aujp;Au �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc;AuGp;Au

p
¼ 118 meV (14c)

(via ref. 75)

L ¼ 1

2
Gc;Au þ Gp;EGaIn þ Genv

� �
(14d)

Above, Gc,Au|p,EGaIn and Gc,Au|p,Au are effective couplings (cf.
Section 2) of junctions chemisorbed on gold substrate and

physisorbed on EGaIn and gold top electrodes, respectively.
G’s with subscripts without vertical bar stand for individual
HOMO-electrode couplings (recall that alkanethiols CnT exhi-
bit p-pype HOMO-mediated conduction75); e.g, Gp,X means
p(hysical) coupling to electrode X(= Au,EGaIn). Let us now
explain how we arrived at the numerical values entering
eqn (14b) and (14c).

The coupling ratios r1,2 of eqn (14b) were estimated
recently.53 The value of r1 E 1/37 was deduced by comparing

Fig. 7 Percentage deviations of the current computed at V = 0.1 V and T = 373.15 K by the various methods indicated in each of the panels a to f with
respect to the value computed exactly.

Fig. 8 Percentage deviations of the current computed at V = 0.5 V and T = 373.15 K by the various methods indicated in each of the panels a to f with
respect to the value computed exactly.
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the couplings of alkane thiols and alkane dithiols. The value of
r2 E 1/7 relies on the dependence of the coupling on the
electrode work function.

To get Gc,Au|p,Au = 118 meV in eqn (14c), we extrapolated the
values of the effective coupling G(n)

c,Au|p,Au - Gn p exp(�bn/2)
for CP-AFM alkanethiols CnT (H–S–(CH2)n�1–CH3) junctions

Fig. 9 Percentage deviations of the current computed at V = 1.0 V and T = 373.15 K by the various methods indicated in each of the panels a to f with
respect to the value computed exactly.

Fig. 10 (a) Plots of V2/|I| versus V enabling the determination of the values of the transition voltages Vt� needed to properly define the bias range where
eqn (12b) applies. (b) Correctly utilized, eqn (12b) is able to reproduce (green curve) the experimental data (black points) for the large area Au-C14T/EGaIn
junction of ref. 70 with an accuracy comparable to that of the exact eqn (12a) (red curve). Diagrams revealing (c) that thermal effects are negligible in the
Au-C14T/EgaIn junction envisaged and (d) that, when applied for the bias range for it was devised,43 eqn (12b) is able to describe quantitatively I–V data in
large area junctions. See the main text for details.
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(Au–CnT/Au). That is, we used the values of Gn (for n = 7, 8, 9,
10, 12) from Table 1 of ref. 75. The exponential scaling of Gn

versus n follows from the exponential falloff Gn p exp(�bn) of
the low bias conductance Gn p Gn

2/(en
0)2, given the fact that the

HOMO offset e(n)
0 of the CnT series is independent of size (n).75

6.2 Estimating the fraction of current carrying molecules and
the extrinsic HOMO relaxation

We will now explain how to use the values of �G and L obtained
from I–V data fitting and the above working equations to
estimate the fraction of the current carrying molecules f and
the extrinsic contribution to the (HO)MO broadening Genv.

6.2.1 Fraction of current carrying molecules f. From the
definition of r1 of eqn (14b), we use eqn (14c) to compute
Gc;Au ¼ Gc;Aujp;Au=

ffiffiffiffi
r1
p ¼ 718 meV. Using again the definition of

r1, we deduce Gp;Au ¼ Gc;Aujp;Au
ffiffiffiffi
r1
p ¼ 3:2 meV. From the defini-

tion of r2 of eqn (14b) we get Gp,EGaIn = r2Gp,Au = 0.456 meV.
From eqn (14a) we can now compute Gc;Aujp;EGaIn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc;AuGp;EGaIn

p
¼ 18:1 meV. With the value S = 3.5 mol nm�2

measured for the molecular coverage of alkanethiol SAMs,76

and the fitting parameter value �G = 0.705 meV (Table 1), we can
finally estimate via eqn (14a) the fraction of the current carrying
molecules

fAu-C14T/EGaIn E 4.3 � 10�4

This value is on the same order of magnitudes of other values of
f reported for large area EGaIn-based junctions using methos
completely different from the present one.20,53,77 Definitely, out
of the total/geometric/nominal area at the EGaIn contact An,
the area of the physical/electric/effective contact Aeff = fAn is
but a tiny fraction (f { 1).

6.2.2 Extrinsic contribution Cenv to the (HO)MO width.
With the values for L (Table 1), Gc,Au, and Gp,EGaIn in hand,
we use eqn (14d) and obtain Genv E 217.3 meV. This is a very
important result. It demonstrates that the extrinsic contribu-
tion represents (Genv/2)/L E 99.7% of the total HOMO width.
Compared to the contribution of the surrounding, the contri-
bution of the electrodes the the HOMO broadening is comple-
tely negligible. To obtain the aforementioned values of f and
Genv we used the values of �G and l obtained by fitting the
experimental I–V data70 to the exact eqn (12a). The values
collected in Table 1 reveal that these values do not significantly
differ from the estimates for f and Genv based on eqn (12b).

To end, it is worth emphasizing that the off-resonant single
level model (eqn (12c)43) is also useful for large area EGaIn
junctions. Eqn (12c) does not only reproduce I–V curves in
nonlinear regime (green line in Fig. 10b) but also allows to
reasonably estimate the fraction of current carrying molecules.

The rather minor difference between the value f = 4.9 � 10�4

based on eqn (12c) and the ‘‘exact’’ value f = 4.3 � 10�4 deduced
via eqn (12a) is due to the fact, albeit smaller than |e0|, L is not
smaller that |e0|/10, which is the condition for eqn (12c) to be
very accurate.57,58

7 Predicting a bias-tuned Sommerfeld–
Arrhenius transition in a real molecular
tunnel junction

Let us now switch to a mechanically controlled break junction
(MC-BJ) of 4,40-biscyanotolane (BCT) with gold electrodes.54

Results for this junction are collected in Fig. 11. Fitting the
digitized I–V data measured at room temperature (Fig. 1 of
ref. 54) to eqn (7) at T = 298.15 K yielded an excellent fitting
curves (R2 = 0.994, cf. Fig. 11a).

Within the bias range sampled in experiment (|V| o 0.7 V),54

thermal effects are non-negligible (thermal excess higher than
10%) only at the ends of the experimental range: |V| 4 V10% =
0.607 V (eV10% E 2(|e0| � 3pkBT) E 2(|e0| � 10kBT)); see
Fig. 11b. Except for biases very close to the highest experi-
mental bias (V = 0.7 V), even the zero temperature expressions
(I0K and I0K,off) are accurate; see Fig. 11e and f. For such
situations, the low temperature expansion (Il,1, Il,2, and Il,3)
provides an improved description over the zero temperature
description (I0K and I0K,off, see Fig. 11b). More significant is
however the high accuracy of the high-temperature approxima-
tions: at the small value L = 1.71 � 0.01 meV { kBT = 25.7 meV
obtained by data fitting, even the lowest order expansion (Ih,1)
excellently reproduces the exact current Iexact; higher order
corrections embodied in Ih,2 are superfluous.

Beyond the bias range explored in ref. 54, the thermal
current enhancement Iexact/I0K becomes more and more pro-
nounced as the resonance value is approached from below
(eV t 2|e0|) and the temperature is increased. Results up to
the highest temperature of potential practical interest (T =
373.15 K) are presented in Fig. 11c–e. They show that for biases
sufficiently close to resonance, values up to Iexact/I0K E 20 can
be reached. In such situations, a gradual Arrhenius–Sommer-
feld transition52 can become observable (Fig. 11d).

In Table 2, we collect the model parameters e0 (o0, HOMO
conduction), L (= G, single-molecule junction fabricated with a
symmetric molecular species) estimated from data fitting to the
various formulas for the current. As visible there, applying
the zero temperature formulas (I0K and I0K,off) to situations
not enough far away from resonance and L { kBT yielded an
error of 22% in the value estimated for the HOMO offset and
15% for G.

Table 1 Model parameter values obtained by fitting the experimental J–V data70 to the formulas for the current indicated in the first column

Method e0 (eV) L (meV) �G (meV nm�1) g f Genv Genv/(2L) (%) R2

Jexact �0.551 � 0.004 109 � 0.004 0.705 � 0.003 0.07 � 0.01 4.3 � 10�4 217.3 99.7 0.998802
J0K �0.535 � 0.004 115 � 0.004 0.695 � 0.002 0.07 � 0.01 4.2 � 10�4 229.3 99.7 0.99884
J0K,off �0.585 � 0.004 — 0.753 � 0.003 0.074 � 0.004 4.9 � 10�4 — — 0.99567
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8 Remarks on the applicability of
presently deduced formulas

Going through the plethora of equations presented above, an
experimentalist less interested in how they were mathemati-
cally deduced may ask what is the appropriate formula needed
and how to proceed in transport data processing for a specific
junction, fabricated with a specific molecule, specific electro-
des, and a specific platform. This section and the next two
sections aim at addressing such legitimate questions. Basically,
within the model parameter ranges indicated, the formulas of
Sections 2, 3 and 5 are general:

8.1 With regard to electrodes

They apply to all electrodes having flat conduction bands
around the Fermi energy EF i.e., having a density of states
practically independent of energy r(e) E r(EF). This translates

into energy independent MO-electrode couplings (Gs,t(e) E
Gs,t(EF) p r(EF)ts,t

2, see below). While this is not the case of
semiconductors or graphene, it is definitely the case of all
typical metals (like Ag, Au, Pt).78

8.2 With regard to molecules

The formulas apply to all molecules wherein the charge trans-
port is dominated by a single level (MO), which is in most cases
either the HOMO or the LUMO. The applicability of the single
level description is often justified intuitively by the sufficiently
large energy separation from the adjacent MOs. In fact, MOs’
energetic separation may be a sufficient condition but is not a
necessary condition. If, in some cases, a few highest occupied
(e.g., HOMO and HOMO�1) or a few lowest unoccupied
(e.g., LUMO and LUMO+1) have energies close to each other,
they typically have different symmetries and/or different spatial
(de)localization. The result is that, out of each group (of

Fig. 11 (a) The experimental I–V curve for a 4,40-biscyanotolane (BCT) mechanically controlled break junction (MC-BJ) obtained by digitizing Fig. 1 of
ref. 54 is excellently fitted by the theoretical current Iexact given by eqn (7) at T = 298.15 K. Curves computed using various approximate formulas for
current with the optimized model parameters (see legend) are also presented. (b) Percentage deviations from the exact current of the current computed
using the methods indicated in the legend shown in a bias range broader than the the bias range explored in experiment (depicted by vertical dashed
lines). The thermal excess current Iexact/I0K depicted (c) as a function of temperature (T) at several bias values (V) and (d) in the (V, T)-plane. Notice the
large values of Iexact/I0K in situations slightly below resonance. (e) At biases slightly below resonance (V = 0.95 V, eV t 2|e0|) Iexact switches from a weakly
T-dependent (Sommerfeld) regime to a strongly T-dependent (Arrhenius-like) regime wherein it can be approximate by the expressions deduced for the
low and high T limits, respectively. (f) Regions in the (V, T)-plane where eqn (8b) is accurate within the experimental accuracy.
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occupied or unoccupied MOs), only one MO has significantly
overlap with the electronic states in metals. Due to different
symmetry (and/or (de)localization) it can happen, e.g., that the
(more distant from EF) HOMO�1 rather than the (closer to EF)
HOMO has a larger hybridization with the single-electron states
in the substrate (or tip/top) electrode. A larger hybridization
means a transfer integral ts quantifying the charge transfer
between HOMO�1 and substrate larger than that of the charge
transfer between HOMO and substrate. This translates into
MO–substrate (or tip) coupling Gs,t p r(EF)ts,t

2 dominated by
the HOMO-1 and not by the HOMO.

8.3 With regard to the fabrication platform

With appropriate model parameter values (to be adequately
estimated from data fitting), these formulas can be applied for
molecular junctions fabricated using any platform, let it be MC-
BJ, STM-BJ, CP-AFM or (as we have just seen in Section 6) EGaIn.
It may be helpful to recall53 here that, like the model proposed in
ref. 43, the present single level model does not assume negligible
intermolecular interactions. An electron that tunnels across a
molecule can interact with the adjacent molecules. Provided that
electron exchange (transfer) between adjacent molecules is
absent, the single level model ‘‘allows’’ intermolecular interac-
tions to give rise to an extra MO shift (thence possible different
values of e0 for single-molecule, CP-AFM, and EGaIn junctions, a
fact which will reflect itself in the best fitting estimates) and an
extra level broadening expressed by Genv.

53 This is the rationale
of ‘‘simply’’ multiplying the present expressions for current
through a single molecule by the number of molecules per
junction, as done earlier in case of CP-AFM junctions75,79,80 or
in arriving at eqn (12) above.

9 Protocol for studying a specific
junction

In view of the results presented above, assuming that room
temperature I–V measurements for a specific molecular junc-
tion are available (which is the common case), we recommend
the following steps for data processing: (i) start by plotting the
measured data in coordinates (V2/|I|,V) and determine the
transition voltages Vt� from the peak location (cf. Fig. 10a).
Use our eqn (6) and (7) of ref. 43 (reproduced below for the
reader’s convenience) to estimate the magnitude of the MO

offset |e0| and g

e0j j ¼ 2
Vtþ Vt�j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vtþ2 þ 10Vtþ Vt�j j=3þ Vt�2
p

g ¼ signe0
2

Vtþ þ Vt�j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtþ2 þ 10Vtþ Vt�j j=3þ Vt�2

p
The MO offset e0 is negative for p-type (normally, HOMO) conduc-
tion and positive for n-type (normally, LUMO) conduction. Recall
that, whatever the formulas for the current utilized, the sign of e0

cannot be merely determined from I–V curves measured for a given
junction (= given molecule, given electrodes). Thermopower experi-
ments to determine the sign of the Seebeck coefficient S or
investigating junctions fabricated with a given molecule and
electrodes having different work functions F.75,79,80 may settle this
issue; positive (negative) S means negative (positive) e0,81 higher
(lower) current for larger F means negative75,79,80 (positive32) e0.

Determine next the value of G ¼ e0j j
ffiffiffiffiffiffiffiffiffiffiffiffi
G=G0

p
using the low

bias conductance G obtained from the slope of the measured
I–V curve at low bias. With the values of e0, G and g thus
obtained compare the measured curve with the simulated curve
computed using our eqn (8b) in the bias range�1.2|Vt�| t V t
1.2Vt+. Alternatively, always in the bias range indicated
(for which eqn (8b) applies), one can fit the measured data to
I0K-off of eqn (8b) wherein e0, G and g are adjustable parameters.
(ii) If attempt (i) fails to produce a good theoretical curve, fit
data to I0K of eqn (8a) in the entire bias accessed experimentally
with e0, G, g, and L as adjustable parameters. If the corres-
ponding point (e0K

0 , L0K) falls in the colored regions of Fig. 6a,
7a, 8a or 9a, this is evidence that the best fit values e0K

0 , G0K, g0K

and L0K are reliable and that, at the corresponding bias,
eqn (8a) is reliable. In other words, at the envisaged bias,
thermal corrections to the current are negligible. Notice that
(like eqn (8b) and (8a)) can hold up to a certain bias (e.g., V =
0.5 V) but can become inadequate at higher biases (e.g., V = 1 V)
(see the example of Section 7). (iii) The failure of attempt (ii)
indicates that (possibly only beyond certain biases) the tem-
perature dependence of the current is significant. Generally
speaking, whenever possible (e.g., using MATHEMATICA) fit-
ting data to the exact eqn (7) is then most advisable. Otherwise
the various analytical formulas for the current Il,1, Il,2, Il,2 of
eqn (9) or Ih,1, Ih,2 of eqn (10) can be easier applied. Because
they merely contain elementary functions the approximate
formulas for Il,1, Il,2, Il,2, Ih,1, and Ih,2 are implementable in
any fitting software package. Loosely speaking, the deeper the
point (e0K

0 , L0K) into the white (non-colored) regions mentioned
under (ii) above, the stronger is the impact of T on the current
at the corresponding bias. (iiia) For cases wherein the point
(e0K

0 , L0K) lies near the edge between colored and non-colored
regions of Fig. 6a, 7a, 8a, or 9a, thermal effects are rather weak,
and using the formula of Il,1 of eqn (10g) for data fitting is
advisable. If the best fitting point (el,1

0 , Ll,1) obtained fitting the
experimental I–V curve to eqn (10h) is found in the colored
regions of Fig. 6b, 7b, 8b, or 9b Il,1 provides an accurate
description and the fitting parameters el,1

0 , Gl,1, gl,1, and Ll,1

are good estimates of the corresponding quantities. Otherwise,

Table 2 Model parameter values obtained by fitting the experimental BCT
data54 to the various formulas for the current, as indicated in the first
column

Method e0 (eV) G = L g R2

Iexact �0.545 � 0.002 1.71 � 0.01 �0.0021 � 0.0009 0.993551
Ih,1 �0.547 � 0.002 1.73 � 0.01 �0.0021 � 0.0009 0.993513
Ih,2 �0.547 � 0.002 1.72 � 0.01 �0.0021 � 0.0009 0.993513
I0K �0.472 � 0.004 1.46 � 0.02 �0.003 � 0.001 0.992632
I0K,off �0.472 � 0.004 1.46 � 0.02 �0.003 � 0.001 0.992632
Il,1 �0.492 � 0.004 1.50 � 0.02 �0.003 � 0.001 0.992729
Il,2 �0.511 � 0.003 1.55 � 0.02 �0.003 � 0.001 0.992809
Il,3 �0.526 � 0.003 1.58 � 0.02 �0.003 � 0.001 0.992860
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performing and inspecting the results of data fitting based on
Il,2 of eqn (9c) (and then Il,3 of eqn (9d) if the case) follows in the
next step. (iiib) If the point (e0K

0 , L0K) lies deep inside the white
(non-colored) regions of Fig. 6a, 7a, 8a, or 9a, thermal effects
are strong, and the formula deduced via high temperature
expansions (Ih,1 of eqn (10g)) and Ih,2 of eqn (10h) should be
employed for reliably estimate the parameters e0, G, g, and L for
the junction under investigation. In cases where (iiib) applies,
performing I–V measurements at variable temperature is highly
desirable, and the issues related to the Sommerfeld–Arrhenius
transition addressed in the next section deserve consideration.

10 Tunneling-throughout
Sommerfeld–Arrhenius scenario
versus tunneling-hopping transition:
a too challenging a dilemma?

For a Sommerfeld–Arrhenius transition to occur in a specific
molecular junction, the parameters e0 and L at given bias V
should fall in regions in the plane (e0, L) where the current
thermal enhancement Iexact/I0K is sufficiently large (say, at least
Iexact/I0K \ 10), like the red curve in (Fig. 11e). The color coding of
Fig. 6a, 7a, 8a, or 9a precisely depicts which combination of values
(e0,L,V) is ‘‘eligible’’ for a Sommerfeld–Arrhenius transition (i.e.,
Iexact/I0K is reasonably large). Experimental curves for current
versus inverse temperature having a shape resembling the red
curve in Fig. 11e have been measured in the past for
several molecular junctions. Examples include junctions fabri-
cated with: conjugated oligo-tetrathiafulvalenepyromelliticdi-
imideimine (OPTIn; OPTI2 in Fig. 6a in ref. 5), bis-thien-
ylbenzene (BTB; Fig. 3c and 4 in ref. 11), cytochrome C and
hemin-doped human serum albuminum (HSA-hemin) (Cyt C and
HSA-hemin; Fig. 6a and b in ref. 12), and closed and open
diarylethene isomers (Fig. 2c and d in ref. 30). Out of the cases
cited, only ref. 11 reported attempts (that failed) of quantitatively
fitting the measured curve of I versus 1/T to a theoretical model
that could come into question, namely the variable hopping range
model82–84 and the classical Poole–Frenkel model for transport
between coulombic traps.85,86 Based on the previous knowledge in
the field, all the aforementioned data were interpreted as evidence
of a tunneling-hopping transition. However, this interpretation
needs to be reconsidered, and all the more so since the present
theory of the Sommerfeld–Arrhenius scenario provides a unique
formula that can be applied for the entire temperature and bias
ranges accessed experimentally. A dilemma may arise in cases
where the measured current I follows an Arrhenius pattern at high
T and eventually switches to T-independent values at low T: is the

dependence I / exp � Ea

kBT

� �
at high T due to thermally activated

hopping or evidence for the strongly T-dependent tunneling
current discussed in this paper? To differentiate between these
two possibilities, in previous studies we suggested investigations
of junctions having electrodes with significantly different work
function32,46 or subject to mechanical stretching.53 The present

results indicate two alternatives easier to implement experimen-
tally in order to differentiate between strongly T-dependent tun-
neling and hopping: (a) To unravel the physics underlying an
observed switching from strong T-dependent to T-independent (or
weak T-dependent) currents, I–V curves measured at low tempera-
tures can be fitted to eqn (8) assuming T-independent I (or eqn (9)
assuming weak T-dependent I). The value |e0| of the MO offset
thus obtained can be compared:

(a1) with the value of the ‘‘activation energy’’ Ea obtained by
fitting the high temperature data to the Arrhenius law

I / exp � Ea

kBT

� �
. An Ea significantly different from |e0| is

evidence for hopping-tunneling transition, |e0| E Ea pleads
for a tunneling-throughout Sommerfeld–Arrhenius scenario.

(a2) with the value of the MO offset |e1/2| obtained via ultraviolet
photoelectron spectroscopy (UPS). Obviously, this makes sense in
case of p-type conduction, where evidence exists that the ‘‘second’’
(tip) electrode negligibly affect the level alignment (e1/2 E e0), which
is basically the same for full and ‘‘half’’ (i.e. only SAM adsorbed on
substrate without tip/top electrode) junctions.75,79,80 For n-type
conduction determining the (LU)MO offset e1/2 via inverse photo-
electron spectroscopy (IPS) could come into question.

(b) To start with a specific example, let us consider again the
BCT junction of Section 7 and compare the ratio of the currents
at room temperature and at liquid nitrogen IRT/ILN|V �
I(V,298.15 K)/I(V,77 K) computed using the exact eqn (7) for
several biases V: IRT/ILN|V=1V = 11.38; IRT/ILN|V=0.9V = 5.55; IRT/
ILN|V=0.8V = 2.20; IRT/ILN|V=0.7V = 1.31; IRT/ILN|V=0.6V = 1.10; IRT/
ILN|V=0.5V = 1.05; IRT/ILN|V=0.4V = 1.03; IRT/ILN|V=0.4V = 1.02. These
values show an almost exponential decrease in the thermal
enhancement IRT/ILN in the narrow bias range 0.7 V t V t 1 V
slightly below resonance (eVresonance = 2|e0| C 1.1 V). By con-
trast, sufficiently away from resonance (V t 0.6 V) the thermal
enhancement is practically negligible (IRT/ILN|Vt0.6V E1). This
example illustrates that the Sommerfeld–Arrhenius transition
is bias sensitive. In a given junction, a Sommerfeld–Arrhenius
transition is observable at some biases while at other biases it
cannot be observed. Such a bias sensitivity could not be
expected if hopping dominated at higher temperature. The
thermal activation energy is mainly determined by molecular
properties (e.g., reorganization energy) which are little sensitive
to external bias.

To sum up, by and large, data measured over a broad range
of biases exhibiting a similar pattern (gradual transition
between two distinct regimes) plead for a tunneling-hopping
transition. Otherwise (i.e., if switching between a weak tem-
perature dependence at low T to a strong T dependence at high
T mainly occurs in a narrow range of V, see Fig. 11c) an overall
tunneling picture applies; the temperature dependence is
merely the result of thermally broadened Fermi distributions.

11 Conclusion

We hope that the various analytical formulas for the tunneling
current reported here will assist experimentalists to adequately
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process transport data measured at nonvanishing (room) tem-
perature and to more properly assign the transport mechanism
at work in a specific molecular junction. Letting alone the
aspect of elegance, the present analytical formulas have an
important practical advantage over the often utilized brute
force method of numerically integrating eqn (4) using a uni-
form energy grid. To resolve both the thermal smearing of
the Fermi distributions and the variation of transmission
with energy, a sufficiently fine uniform energy grid requires
an energy step size de E min(kBT,L)/10. In an energy range
De B 10 eV this easily translates into a grid with N B 104–
106 points, which may make data fitting time consuming in
some cases.

To be sure, adaptive numerical quadrature can alternatively
be employed, and it is to be preferred to the brute force
approach. Still, in spot checks to reproduce the present exact
results obtained via eqn (7), we had to conclude that applying
adaptive numerical quadrature to eqn (4) with default settings
(precision goal, working precision, etc.) using current distribu-
tions of MATHEMATICA (13.2.1) and MATLAB (R2021a)
also poses nontrivial numerical problems for small L and kBT
(kBT, L t 1 meV).

Based on the results reported in this paper, for experimen-
talists unable to use eqn (7) to data fitting—e.g., because
neither MATLAB nor ORIGIN can handle digamma function
of complex argument—we recommend utilization of eqn (10g)
and (9c), which provide a accurate description that complimen-
tary covers most situations of practical interest. Albeit some-
what lengthy, they merely comprise elementary functions and
can be used with any routine fitting software.

A cursory glance at an experimental curve looking like that
depicted in Fig. 11d can easily be taken as ‘‘evidence’’ of a
tunneling-hopping crossover or—in view of the T-dependent
slope (‘‘activation energy’’)—of a variable variable-range hop-
ping. In reality, we have seen that, it is the tunneling that is at
work there both at low and high T. Emphasizing this point, the
results reported above aim at aiding the molecular electronics
community in not rushing conclude a transition from tunnel-
ing to hopping merely based on measured transport properties
that switch from nearly temperature independent (Sommerfeld
regime) to strongly temperature dependent (Arrhenius-like
regime) upon rising the temperature.

The fact that the presently discussed Sommerfeld–Arrhenius
can be tuned by bias can be an important theoretical finding in
correctly assessing the physics underlying a curve like that of
Fig. 11d.

Not to forget, we have also shown that the single level model
considered in this paper is useful not only for single-
molecule54,87,88 and CP-AFM69,75,79,89 junctions for which it
was previously validated. It can also decipher charge transport
in large area (An E 500 mm2) junctions with EGaIn top
electrode. For example, we have shown that, when adequately
applied, even our off-resonant single level model43 can provide
a reasonable estimate of the fraction of the current carrying
molecules ( f = Neff/Nn = Aeff/An E 4 � 10�4) in a large area
EGaIn junction fabricated with 1-tetradecanethiol.
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