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Quorum sensing-induced transition from colloidal
waves to Turing-like patterns in chemorepulsive
active colloids

Jiaqi Cao, Jiaxin Wu and Zhonghuai Hou *

The study of active systems, especially in the presence of a chemical background field, is garnering

significant attention. Traditionally, the self-propelled velocity of active colloids was assumed to be

constant, independent of the local density of colloids. In this work, we introduce a chemotactic active

system that features quorum sensing (QS), wherein particles act as chemorepellents. Interestingly, these

particles lose their activity in regions of high local particle density. Our findings reveal that QS leads to a

transition from an oscillatory colloidal wave to a Turing-like pattern, with the observation of an

intermediate state. With the variation of the sensing threshold, both the mean oscillation frequency

of the system and the number of clusters exhibit non-monotonic dependence. Furthermore, the

QS-induced pattern differs markedly from systems without QS, primarily due to the competitive

interplay between diffusion and chemotaxis. The dynamics of this phenomenon are explained using a

coarse-grained mean field model.

1 Introduction

Active matter systems are distinguished by their consistent
conversion of internal energy into work or movement, thereby
maintaining a state of non-equilibrium. The collective beha-
viors of these systems have garnered significant research
attention1–5 due to their unique properties and the myriad
intriguing behaviors they exhibit, spanning from individual to
collective scales. At the individual scale, active particles can
demonstrate anomalous diffusion in polymer solutions.6 On a
collective scale, they can form various dynamic structures such
as collective vortexes,7,8 swarms,9,10 and polar movements.11,12

In addition to their own dynamic properties, active particles
can even act as a bath to influence the dynamics of other
systems. For instance, passive particles can exhibit anomalous
diffusion and aggregation behavior in the active bath.13,14

Very recently, one of the frontiers has been the study of
active particles in a background field. Typically, in actual active
systems, chemical substances present in the background are
needed to be considered, which are coupled with the motion of
active particles, inducing the movement upward (the ‘‘chemoat-
tractive’’ case) or downstream (the ‘‘chemorepulsion’’ case)
the chemical concentration gradient, known as chemotaxis.
Employing this chemotaxis mechanism, real microorganisms

navigate chemical gradients to optimize their living conditions.
Similarly, artificial microswimmers mimic this behavior
through diffusiophoresis, a process often facilitated using
Janus colloids.15,16 These colloids are designed with a catalytic
coating on one side that produces chemicals, thereby generat-
ing a chemical gradient that induces directional movement.

Recent studies have reported many interesting collective
behaviors of active Janus particles. For example, the motion
of active Janus particles will be suppressed in the cluster,
thereby stabilizing the structure and shape of the dynamic
clusters.17–19 Another example is that for the binary mixed
system of active Janus particles and passive particles, the
mutual effect of active and passive subsystems on each other
leads to the expulsion of passive particles in the vicinity of an
active swimmer (that can initially be either moving or immo-
bilized) and at the same time to the localization of active
swimmers.20–22 Furthermore, various self-organization beha-
viors of active Janus particles under the effect of chemotaxis
have also been reported in previous works. For example, Saha
et al.23 reported that the fluid flows set up around the chemo-
tactic active Janus particle can turn its axis of orientation to
align parallel or antiparallel to the local gradient, leading to
clumping and patterning at a low reactant concentration.
Besides, Liebchen and co-workers24 established an active Kel-
ler–Segel model and studied the collective behavior of active
Janus particles under the conditions of chemical attraction
and chemical repulsion. The study found that with chemical
attraction, a single large droplet structure was finally formed.
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With chemical repulsion, the system will eventually form a
dynamically changing cluster structure with self-limiting size.
This is in sharp contrast to the relatively static clusters that are
separated by motion at higher densities.25,26 Following this
report, Liebchen et al.27 introduced chirality, and found that in
the case of chemical attraction, the system changes from small
to large with angular velocity, undergoing a transition from a
large droplet to a parallel fringe traveling wave structure with a
fixed wavelength. Later, they28 established a more generalized
phoretic Brown particle model and found that chemical repul-
sion can cause the system to form a striped colloidal wave
pattern that is chased by a chemical field.

In all these studies, it was assumed that the self-propelled
speed of particles is constant. However, recent theoretical29,30

and experimental31 explorations have discovered a mechanism
termed quorum sensing (QS), whereby the self-propelled speed
of a particle will depend on the local density of particles in the
region in which it is located, rather than being simply a
constant. This QS feature has significantly influenced the beha-
vior of active particle systems. For instance, Farrell et al.32

theoretically investigated the collective behavior of active par-
ticles with both aligned interactions and a decrease in motility
with increasing local density of particles. Under such condi-
tions, they observed not only motion-induced phase separation
behavior but also the formation of moving clumps, lanes, and
arrests, none of which are seen in active systems with only
aligned interactions. Experimentally, Tobias Bäuerle et al.33

used artificial Janus particles instead of live bacteria to artifi-
cially set QS rules by laser irradiation and computer decision-
making. Their results demonstrate that cluster formation
requires not only the coexistence of active and inactive particles
but also the ability of the particles to change their motility
depending on the local density of particles. Additionally, par-
ticles can only aggregate into clusters within a specific thresh-
old value; if this value is too high or too low, the particles will
drift in different directions, thus failing to form stable clusters.
Nevertheless, to the best of our knowledge, how QS would
influence the behavior of a chemotaxis system has not yet been
studied.

Motivated by this, in this work, we study the collective
behaviors of chemotactic active Janus colloidal particles endowed
with a QS-feature. In particular, we investigate scenarios in which
particles navigate downstream of the background chemical field
gradient (in a chemorepulsive manner), especially in cases where
these particles become inactive once the local particle density r
surpasses a threshold rc. Our primary emphasis is on under-
standing how rc influences the system’s behavior and structure.
Our findings reveal that incorporating QS markedly alters the size
and count of self-limiting clusters and attenuates the system’s
oscillatory behavior once rc reaches a particular value. This
suggests that the introduction of QS curtails particle aggregation,
fostering a more diffusive particle flow. This diffusive flow coun-
terbalances the external chemotactic particle stream, reinforcing
the cluster’s stability.

The article is organized as follows: Section 2 introduces the
dynamical model. Numerical results are given in Section 3,

together with discussions in Section 4. Finally, we summarize
this article in Section 5.

2 Model

Here, we consider a two-dimensional system which is
composed of chemotactic active Janus particles and the
chemical background field (as shown in Fig. 1). In particular,
the active Janus particle exhibits a QS feature, i.e., its self-
propelled velocity actually depends on the local density of
current position of particles, described by vr = v0�Y(rc � r),
where v0 is a constant value and Y is the Heaviside step
function, as shown in panel (A). When local density is lower
than rc, the particle possesses self-propel velocity v0, whose
direction is downstream the chemical gradient, corresponding
to the chemorepulsion, as shown in panel (B). However, in (C),
when particles undergo clustering and go beyond rc, the self-
propel velocity vr - 0, and particles transform into diffusion
motion.

It is worth stating that choosing a step function in our work
is just a modeling, such that the QS-function can be described
by a single threshold parameter rc. In real systems, the QS-rule
could be quite complicated, and a smooth function would be
more reasonable. Actually, step function has also been used in
many recent works related to QS.33–36 Physically, the step
function can be used to describe the intermittent motion of
many living organisms, and the motion of light-controlled
micromotors in some experiments.33,34 In a recent QS-related
theoretical work,35 the authors also stated that ‘‘It requires the
derivative of v(r), which thus needs to be a continuous func-
tion. While in principle a continuous response might be
achieved through quorum sensing, in realistic applications as
mentioned above, the response is discontinuous’’. Therefore,
the use of a step-function for the QS mechanism is not that
‘‘unphysical’’.

To describe the dynamics, we use a coarse-grained-level
mean field model.24 Its density and polarization fields, r(x,t)
and P(x,t), are established, where r(x,t) represents the active
particles’ local density, and P(x,t) is the local average of
polarization describing the direction of self-propulsion. In

Fig. 1 Schematic picture (A) shows the variation of the self-driven velocity
vr as a function of local density r. (B) shows the Janus particles in a
directional movement by chemorepulsion with self-propulsion velocity v0

against the chemical gradient rc. (C) Particles undergo clustering, and
once the local density of particles’ aggregation exceeds the sensing
threshold rc, triggering QS, they will lose their activity and exhibit diffusion
motility (Grey dots: chemotaxis signaling molecules produced by the
yellow half side of the Janus particles).
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addition, QS-active particles are immersed in a background
chemical field c(x,t), and the polarization direction rotates in
response to the gradient of the chemical field c(x,t), leading to

_r = �r�(rvrP) +Drr2r (1)
:
P = �gP + DPr2P + brc � g2|p2|P (2)

ċ = Dcr2c + k0r � kdc + kar�(rP) (3)

Here, the evolution of the density field (eqn (1)) contains the
self-propelled term and diffusion term with the isotropic diffu-
sivity Dr. In eqn (2), the first term contains a relaxation rate g
describing the local decay of polarization, which originates
from the fact that the colloid takes a certain amount of time
to rotate in response to the fluctuation in chemical concen-
tration. The second term expresses the direction of diffusion
with the translational diffusivity DP. The chemotaxis is intro-
duced by the third term, where b is the chemotactic coupling
strength; here, we focus on chemorepulsion, and thus the b is
set to be negative. The term in g2 describes saturation in P upon
strong alignment where the cubic term is used to improve the
numerical stability of the equation. The evolution of the
chemical field also produces a diffusion, with coefficient Dc,
assuming that the chemical substances are created at rate k0r
and decay at rate kd. Finally, the term kar�(rP) describes an
anisotropic correction to the isotropic chemical production
term (k0r), which is inevitably brought in by Janus particles
covered with a non-uniform coating.

Actually, QS in living systems requires communication
between individuals, which is achieved by the release of signal-
ing molecules with a production and degradation rate.37

Because such molecules have a finite lifetime, each organism
senses the molecular concentration. Here, such details of the
signaling molecules are not explicitly expressed in our model-
ing. And, for simplicity, the response of the particles to such
signal molecules is considered to be instantaneous.

Subsequently, we have non-dimensionalized the equations

by using the characteristic length scale ~x ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kd=Dr

p
; time

scale t̃ = kdt, and setting the density of particles ~r = rk0|b|v0/

(kd
2Dr), polarization ~P ¼ v0=

ffiffiffiffiffiffiffiffiffiffiffi
kdDr

p� �
P; concentration of che-

micals c̃ = cv0|b|/(kdDr). The independent dimensionless para-
meters in our model include G = g/kd, DP ¼ DP=Dr,

Dc ¼ Dc=Dr, k = kakd/(k0v0), G2 = g2Dr/v0
2 and ~Y = Y(rc � r),

also s = sgn(b) = �1 set for the chemorepulsion. These dimen-
sionless parameters help to reduce the complexity of the model
and make it more tractable for both analytical and numerical
investigations. Then, we rewrite the equations as follows (for
the sake of brevity in the equations, now we omit the tildes):

_r = �r�(rPY(rc�r)) + r2r (4)

_P ¼ �GP þDPr2P þ src� G2 P2
�� ��P (5)

_c ¼ Dcr2cþ r� cþ kr � ðrPÞ (6)

We solved equations numerically on a square box of side
L = 80 using finite difference methods under periodic boundary

conditions and a small perturbation of the uniform state
(r,P,c) = (r0,0,c0) as initial conditions.

3 Results

First, we analyze the pattern characteristics of the system under
various sensing threshold parameters, rc. Subsequently, we
examine the general trends of the system oscillation mode,
cluster count, and average cluster radius as rc decreases con-
sistently. Detailed parameter settings are provided in the anno-
tations of Fig. 2.

In the absence of QS (which corresponds to rc = +N), initial
fluctuations for chemorepulsive Janus particles intensify, lead-
ing to the formation of dense colloidal clusters from a uniform
state. These clusters do not coarsen beyond a specific size for a
sufficiently long time. The features of this microflock structure
are in agreement with the results as reported in ref. 24.
The clusters exhibit an approximation of a hexagonal lattice
arrangement, with particles dynamically transitioning between
clusters, resulting in a ‘‘blinking’’ pattern. This continuous
activity means that the clusters remain in perpetual motion.
Both the local particle density and chemical field over time
predominantly display sinusoidal waveforms (refer to Fig. 2a).
Such oscillatory behavior indicates a consistent periodicity,
characterized as a colloidal wave mode, arising from the
ongoing particle exchange between clusters. The oscillation
induces a drift in the clusters, causing minor deviations from
a perfect sine wave at fixed lattice points. Overall, this manifests

Fig. 2 The curve chart on the right shows the evolution of density r (black
curve) and chemical concentration c (red curve) over time t at point P in
the left-hand corresponding snapshot, under different sensing thresholds
(a) rc = +N (without QS), (b) rc = 40, (c) rc = 18, and (d) rc = 11. As for (d), a
stationary Turing-like pattern is created, thus the corresponding curves are
horizontal lines. On the left side of the graph, four sets of snapshots of
density field r and chemical field c for the corresponding sensing thresh-
old rc as a function of x and y are shown at t = 1525, with the color bar
going from dark to light corresponding to the values from low to high.
(Parameter space: r0 ¼ 10;DP ¼ Dc ¼ k ¼ G ¼ 1;G2 ¼ 2 (specifically,
b = � 1, v0 = Dr = DP = Dc = k0 = kd = ka = g = 1, g2 = 2), time and space
units as tu = 1 and xu = 0.2).
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as a wave moving through the microflocks from the upper right
to the lower left. Notably, a time lag is evident between the peak
chemical concentration and the minimum particle density,
suggesting a relative delay in particle movement concerning
the chemical field’s evolution.

As delineated in ref. 24, the ‘‘blinking’’ pattern emerges
from the interplay of two instability mechanisms: Janus instability
and delay-induced instability. Janus instability, induced by the
term kar�(rP), arises due to the anisotropic chemical production
of Janus particles. Initial fluctuations cause active particles to
reorient towards the chemical density minimum, leading to an
inward-facing aster. The cluster’s localized anisotropy in chemical
production generates a chemical repellent shell, which consoli-
dates its particles and repels external ones, limiting its growth.
The delay-induced instability, attributed to �gP, pertains to the
relaxation effect of polarization. Colloids initially accumulate at
reduced chemical concentrations. As the cluster’s size grows, so
does the chemical repellent produced at its core, elevating the
chemical concentration therein. If particles reorient slowly relative
to the timeframe needed to counteract the initial fluctuations,
the production of the repellent can exceed the required amount,
converting the initial concentration minimum into a maximum.
Consequently, particles may drift away, leading to cluster disin-
tegration. The synergistic action of both instability mechanisms
induces the periodic fluctuation of the traveling wave pattern,
resulting in the observed ‘‘blinking’’ mode.

For a considerably high sensing threshold (rc = 40, as shown
in Fig. 2b), the system mirrors the behavior observed when
QS is absent. However, upon reducing the sensing threshold
to rc = 18, distinct variations emerge. The system’s ‘‘blinking’’
becomes notably subdued in both frequency and intensity,
accompanied by alterations in cluster size and count (refer
to Fig. 2c). The oscillatory waveform deviates from a pure
sinusoidal shape, exhibiting sawtooth-like spikes, suggesting
a multifrequency oscillation mode. Additionally, the delay
between the chemical field’s oscillations and the particle
density nearly vanishes, aligning the chemical field’s minima
with the particle density’s maxima. One can infer that the
introduction of QS potentially dampens the delay-induced
instability, consequently attenuating the density oscillation’s
frequencies and amplitudes. Remarkably, when rc reaches a
specific threshold, the system’s state exhibits a pronounced
transformation, as illustrated in Fig. 2d. Contrasting starkly
with the non-QS scenario, the dense colloidal clusters coalesce
into significantly larger formations, fewer in count, and adopt a
structured arrangement. Notably, the system’s oscillatory
dynamics cease, giving rise to a stationary Turing-like pattern.

This oscillation’s cessation is pivotal, primarily as it emerges
as a unique feature resulting from QS. It is plausible that the
QS’s introduction instills a fresh instability mechanism within
the system, curbing its oscillations and predisposing it to
stabilize into a Turing-like pattern. Delving into the Turing-
like pattern’s genesis, Fig. 3 delineates the variations in r and c
as individual clusters evolve from their initial states. Following
an initial random perturbation, active particles gravitate
towards areas of diminished chemical concentration due to

chemorepulsion against the chemical gradient direction, form-
ing nascent clusters. Subsequently, the particle density at these
cluster centers surpasses the sensing threshold, rendering
the particles passive. These passive entities, devoid of their
chemical field linkages, predominantly diffuse to adjacent
regions with lower particle densities. This action not only caps
the particle count at the cluster’s core but also, facilitated by a
lag in orientational response, consolidates the cluster’s struc-
ture. Concurrently, chemical concentration wanes, attributed to
intrinsic degradation, diffusion, and the Janus instability. With
the ongoing influx and clustering of active particles, the passive
particle domain expands. As the evolution advances, the differ-
ential concentration of c—high externally and low internal-
ly—creates a protective shell, confining internal particles
while repelling external ones. Over time, a balance between
outward diffusive flow and central active flow is achieved,
enhancing the cluster’s symmetry. Ultimately, a sizable stable
cluster is formed, which is bordered by active particles and
densely packed with passive ones internally.

This observation prompts an inquiry into the influence of
QS on the particles’ chemotactic behavior. As delineated in
Fig. 2, the QS appears most potent at rc = 18. However, the
particles seemingly struggle to circumvent regions of elevated
chemical concentration when rc = 11 (refer to Fig. 2d). When
expansive regions indicate high concentrations of c(x), a sub-
stantial fraction of particles must inhabit these areas, rather
than being exclusively contained within a circumscribed zone,
as discernible in Fig. 3d and h. This raises the question: does
an optimal rc exist that maximizes chemical repulsion effi-
ciency? To corroborate this, we compute the integral of r(x,t)�
c(x,t) over the entire system for an extended time t. Subse-
quently, we plot this value against t to observe its evolution over
time (as shown in Fig. 4A) and average the r(x,t)�c(x,t) to assess
its temporal evolution (see Fig. 4A) and average the result over

Fig. 3 The snapshots of the evolution of an individual cluster during the
formation of the Turing-like pattern. (a)–(d) Corresponds to the distribu-
tion of the density field, and (e)–(h) corresponds to the distribution of the
chemical field at the moments t = 4, t = 8, t = 40 and t = 400, respectively,
where the white part represents the distribution of passive particles. The
upper color bar corresponds to the density value and the lower color bar
corresponds to the chemical concentration, where the left side corre-
sponds to the t = 4, t = 8 moment and the right side corresponds to the t =
40, t = 400 moment.
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an ample timeframe, plotting it against rc (as shown in Fig. 4B)
to ascertain any potential minima (refer to Fig. 4B).

As illustrated in Fig. 4A, for rc = +N (i.e., in the absence of
QS), the integral value exhibits time-dependent oscillations
resembling a sinusoidal wave, mirroring the local particle
density’s evolution. With rc = 40, the oscillation amplitude
diminishes, yet its equilibrium position rises slightly, a trend
more discernible in Fig. 4B. As rc decreases further (e.g., rc =
18), the integral value stabilizes, exhibiting minor amplitude
with an irregular waveform. At even lower thresholds like rc =
11, the integral remains constant, signaling the system’s transi-
tion to a steady state. Notably, at this juncture, the integral
value is so high that the particles do not seem to be able to
completely avoid the high chemical concentration region, a
deviation from patterns observed at elevated rc levels.

Fig. 4B provides an in-depth analysis of the average product
of r(x,t) and c(x,t) across varying rc thresholds. As rc decreases,
a consistent increase in the average integral value is observed,
peaking near rc = 25. This increase suggests that lower
chemical concentration areas within clusters produce more

passive particles, displacing active particles and preventing
them from completely avoiding high-concentration areas.
As rc is further reduced, the density of passive particles inside
the clusters decreases, subsequently lowering the integral
values. Notably, the minimal value at rc E 19 suggests that it
may be the optimal threshold for maximizing the chemical
repulsion efficiency. With further decreases in rc, the radius of
the clusters grows, diminishing the effectiveness of chemotaxis
and increasing the overlap with high concentration areas,
resulting in higher average integral values.

Based on these observations, we infer the existence of an
optimal rc for maximum chemorepulsion, specifically around
19 in this study. This threshold likely represents a harmonious
balance between the collective behavior of colloidal particles
and chemorepulsion, leading to ideal pattern formation. While
the precise value of rc for optimal chemorepulsion may vary
with system parameters, our findings offer valuable insights
into modulating the colloidal particle behavior by adjusting rc.

To further characterize the change of the system state with
decreasing sensing threshold, the dependences of the oscilla-
tion frequency, cluster number, and average radius of the
system on the sensing threshold rc are presented in Fig. 5.
It can be observed that the oscillation frequency and cluster
count exhibit analogous trends: both predominantly decrease
with a diminishing sensing threshold, showcasing non-
monotonicity around rc = 30 and peaking near 25. However,
while the oscillation frequency approaches zero around rc = 18,
the cluster count hits its nadir at 11. In contrast, the average
radius of the clusters continues to increase as the sensing
threshold decreases and reaches a maximum at 11. The average
radius also shows a slight anomaly around 30 and achieves a
minimum around 25, but the manifestation is not particularly
pronounced. Since the overall particle density of the system is
fixed, a decrease in the number of clusters inevitably leads to an
increase in the average radius. Hence, a negative correlation
between the two is reasonable.

The conducted studies conclusively reveal that a decrease
in the sensing threshold rc transitions the system from an ideal
sinusoidal spatio-temporal oscillation to a static configuration,
namely, a Turing-like pattern, with an intermediate transitional
state evident (refer to Fig. 5a).

The system’s oscillation modes categorize it into three
distinct phases over the sensing threshold range: the phase
in the colloidal wave mode oscillating at single frequencies
when rc 4 30; from rc = 18 to 30, it is the transition region
where the system oscillates at multiple frequencies, and finally,
from a related small value like rc = 11 to 18, it is the phase
formed in a Turing-like pattern with a static structure.

In the initial phase where rc 4 30, passive particles are
absent from the system (as evidenced in Fig. 5c). The system
comprises solely chemically reactive colloidal particles that
migrate against the chemical field concentration gradient
towards areas of lower chemical concentration, resulting in
pronounced local particle density. The chemical production
rate of these particles directly correlates with their local density,
inducing a rapid surge in the chemical concentration at their

Fig. 4 (A) Temporal evolution of the product of particle density, r(x,t), and
chemical concentration, c(x,t), integrated over all spatial coordinates x for
various quorum sensing thresholds, rc. The different curves represent
distinct rc values, illustrating how the collective behavior of the particles,
in terms of chemorepulsion, changes over time for different levels of
quorum sensing. The inline plot is a separate zoomed-in display of the
results for rc = 18, in order to show its vibration waveform more clearly.
(B) Average value of the integrated product of particle density, r(x,t), and
chemical concentration, c(x,t), over a sufficiently long time span, plotted
against different quorum sensing thresholds, rc. The plot reveals an
optimal rc value where chemorepulsion is most effectively realized,
indicated by the minimum value in the curve.
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locations. As the original chemical gradient diminishes, the
delay in particle dispersion, due to the inherent lag in their
steering and mobility, fosters continuous chemical accumula-
tion in that vicinity. This leads to a transient concentration
overshoot, subsequently inverting the gradient and repelling
the colloidal particles. The cyclical nature of this process
eventually synchronizes the particles’ collective movement,
culminating in the macroscopic ‘‘blinking’’ pattern.

During the phase of multi-frequency oscillations, passive
particles start to appear in the system. Initially, active particles
cluster towards the areas of low chemical concentration. How-
ever, under the influence of QS, particles that aggregate too
densely at the cluster’s core exceed the threshold value rc and
transition to a passive state. These passive particles exhibit only
diffusive behavior, resulting in a cluster configuration where
active particles envelop a core of passive ones. The cluster’s
outer layer is primarily influenced by chemorepulsion, while its
center is governed by diffusion. Within the rc range of 25 to 30,

we observe a marginal increase in the average oscillation
frequency, as depicted in Fig. 5a. 2. Concurrently, the ratio of
passive to active particles, NP/NA, varies from 0 to 0.1, as shown
in Fig. 5c. We note that the variation in oscillation frequency
mirrors the changes in the integral values as shown in Fig. 4B,
suggesting a tight correlation between particle density and
chemical concentration overlap and the system’s oscillatory
behavior. This overlap likely intensifies the chemorepulsive
effects on active particles. Additionally, an increased number
of clusters in a confined system reduces the distance between
them, facilitating faster particle exchange among clusters.
Previous studies have reported that passive particles exhibit
weak activity and super-diffusion behavior at higher concentra-
tions of active particles.38,39 Furthermore, the translational
diffusion of passive colloids, apart from chemical repellency,
plays a crucial role in cluster disbanding.40 These observations
indicate that similar mechanisms could influence our system.
The introduction of weak activity in passive particles may lead
to the emergence of additional oscillation frequencies. Simulta-
neously, enhanced diffusion rates of passive particles could
expedite cluster dissociation. These factors collectively may
contribute to a slight ‘‘blue shift’’ in the system’s average
frequency, an intriguing phenomenon that further enriches
our understanding of the system’s dynamic behavior.

As rc decreases, the proportion of passive particles further
increases and the diffusion rate of passive particles will gradu-
ally fall back to the normal level. Within the cluster, the loss of
chemotaxis and the dominance of pure diffusion prevent
colloidal particles from aggregating closely, resulting in an
expansion of the average cluster size. As the chemical concen-
tration recoil diminishes, inter-cluster particle exchanges
become infrequent, leading to a sharp decline in oscillation
frequency.

Once the NP/NA ratio approaches 1, passive particles begin to
predominate, and the system’s oscillatory behavior ceases,
culminating in a static Turing-like pattern.

In summary, the QS mechanism affects the proportion of
passive particles in the system, thereby determining its state.
These passive particles, typically enveloped by active
ones, reside in areas of lowest chemical concentration. This
insight suggests potential applications for manipulating system
behaviors.

4 Discussion
4.1 Linear stability analysis

In order to gain a deeper understanding of the mechanisms
underlying the static patterns and oscillatory modes observed
in Fig. 2 and 4, we conducted a linear stability analysis on our
model. The primary objective of this analysis is to ascertain
how minor perturbations near the system’s uniform or stable
solution evolve over time. Notably, the average colloidal den-
sity, denoted as r0, remains conserved throughout the system.
We introduced small perturbations to the system, represented
by the wave vector q. The growth rate or dispersion relation of

Fig. 5 (a) The variation of average oscillation frequency f, (b) the variation

of cluster number N (black dot) and cluster average radius %R (red circle),
while the blue curve indicates the predictions made by linear stability
analysis, (c) the variation of the average ratio of the number of passive
particles (NP) to the number of active particles (NA) in each cluster as a
function of sensing thresholds rc. According to the different modes of
oscillation, Fig. a is divided into 3 phases: (1) steady state structure (Turing-
like pattern), (2) multi-frequency oscillation mode, and (3) colloidal wave
with a single frequency (where the frequency in the phase (2) is calculated

by equation f ¼
P
i

fiAið Þ
�P

i

Ai).
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these perturbations is given by l(q). For the step function
Y(rc�r), we adopt the following approximation:

For r r rc, Y(rc�r) = 1;
For r 4 rc, Y(rc�r) = 0.
In the former case, the step function can be treated as a

constant with a value of 1. In the latter case, this term can be
disregarded. We will now discuss each scenario separately.

Initially, considering r r rc, within a spatial dimension,
we introduce perturbations dr, dP and dc to the system of
equations centered around the uniform solution (r,P,c) =
(r0,0,r0). Neglecting the higher-order terms induced by the
perturbation, we obtain the linear equation system describing
the temporal evolution of the perturbations as:

_dr

_dP

_dc

0
BBB@

1
CCCA ¼M

dr

dP

dc

0
BBB@

1
CCCA; M ¼

@x
2 �r0@x 0

0 �GþDP@x
2 s@x

1 kr0@x Dc@x
2 � 1

0
BBB@

1
CCCA

For all three fields, we assume that perturbations take the form
of plane waves. Consequently, we derive the characteristic
polynomial P(l) concerning l(z), where z := iq:

PðlÞ ¼ detðM � lIÞ

¼ z2 � l
� �

z2Dc � l� 1
� �

�Gþ z2DP � l
� �

� r0sz
2 �klþ kz2 þ 1
� �

This polynomial of degree three in l(z) provides a characteristic
equation by setting P(l) = 0, which describes the system’s
stability. By identifying the values of l(z) that satisfy this
equation, we can distinguish between stable and unstable
modes. However, the general form of the result for l(z) is
intricate, and its physical interpretation is not immediately
apparent. To streamline the equation, we substitute the system’s
parameter values, yielding:

z2 � l
� �

z2 � l� 1
� �2þr0z2 z2 � lþ 1

� �
¼ 0

Subsequently, we numerically compute the dispersion relations
l(q)1,2,3 and represent the results in Fig. 6 for a more direct
physical interpretation.

Based on the numerical relationship between the growth
rate l and the wave vector q presented in Fig. 6, we identified
three distinct regimes: (i) stability of the uniform state, where
the growth rate is real and negative; (ii) stationary patterns
arising from growing stationary modes with a positive real
growth rate; and (iii) moving patterns resulting from oscillatory
instabilities, which possess a non-zero imaginary part of the
growth rate and manifest primarily at smaller wave vectors,
characterizing it as a long-wavelength instability. This insight
aligns with the observation of ‘‘blinking’’ patterns in the system
at high rc values.

Two primary reasons account for the emergence of finite-
sized clusters rather than complete phase separation: firstly,
each cluster forms a chemorepellent shell that wards off
approaching colloids. Secondly, as the cluster size enlarges,
the amount of chemorepellent produced isotropically at its core

also escalates, causing the cluster to disintegrate if it becomes
overly large.

For r 4 rc, we can derive the following system of equations:

_dr

_dP

_dc

0
BBB@

1
CCCA ¼

@x
2 0 0

0 �GþDP@x
2 s@x

1 kr0@x Dc@x
2 � 1

0
BBB@

1
CCCA

dr

dP

dc

0
BBB@

1
CCCA

From this, the characteristic polynomial P(l) for l(z) is given by:

PðlÞ ¼ detðM � lIÞ

¼ z2 � l
� �

z2Dc � l� 1
� �

�Gþ z2DP � l
� �

� kr0sz
2

� �
Substituting the specified parameter values, we further obtain:

z2 � l
� �

�lþ z2 � 1
� �2þr0z2
� �

¼ 0

Solving this equation yields three solutions: l1ðqÞ ¼
�q2; l2ðqÞ ¼ � q2 þ 1

� �
� q

ffiffiffiffiffi
r0
p

and l3ðqÞ ¼ � q2 þ 1
� �

þ q
ffiffiffiffiffi
r0
p

.

For all values of q, l1,2,3(q) are real. We will discuss the system
states corresponding to these solutions in the subsequent
sections.

Within the range of q 4 0, both l1(q) and l2(q) consistently
fall below zero, indicating stability in the uniform state at these

Fig. 6 Dispersion relations for different values of r0. The top panel
illustrates the variation of the real part of the growth rate l with wave
vector q (where the gray horizontal dashed line represents l(q) = 0). The
bottom panel depicts the variation of the imaginary part of l with q.
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eigenvalues. However, for l3(q), it only exceeds zero at certain q

values. Solving for l3(q) = 0, we identify q ¼ 1=2
ffiffiffiffiffi
r0
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 � 4

p� �
as the boundaries for linear instability modes. Modes within
these two wavenumber values are unstable, as they possess
growth rates above zero, leading to phase separation and the
eventual formation of static patterns in the system. The wave-
number corresponding to the maximum growth rate can be
determined from the conditions qql = 0 and qq

2l o 0, which
yields

ffiffiffiffiffi
r0
p

=2. Additionally, a double root appears in the equation

when r0 = 4. Hence, linear instability modes exist only when
r0 4 4.

Furthermore, given thet system’s conserved overall average
particle density r0, the formation of static clusters entraps
numerous particles, leading to a decreased average particle
density outside these clusters where r r rc. This is equivalent
to a reduced initial particle density r0 under conditions r r rc.
Numerical outcomes from Fig. 6 show that a decline in r0

corresponds to a reduced system’s maximum growth rate
lmax(q). This elucidates why, with a decreasing rc value, the
system’s colloidal wave oscillation intensity also diminishes.
Concurrently, at the edge of the clusters, due to the competitive
interplay between the diffusion of passive particles and
the chemotaxis of active particles, coupled with the intricate
continuous transitions between particle deactivation and acti-
vation, multiple growth modes might coexist in the system.
This could lead to the emergence of multi-frequency oscillatory
instability modes in the system.

Lastly, as r0 continues to decrease, as shown in Fig. 6,
around r0 o 6, Re[l1,2,3(q)] remains below zero. Under these
conditions, regions in the system where r r rc eventually
stabilize into a uniform state. The oscillations in the system
dissipate, giving rise to stationary stable patterns.

These findings highlight that QS instability affects the
mobility of Janus particles in particle-conserving systems, as
emphasized by Bäuerle et al.,33 shifting the distribution ratio
between passive and active particles and subsequently impact-
ing the system’s evolutionary patterns and pattern formation.
This represents a novel and unique aspect, distinct from the
original Janus instability and delay-induced instability.

Cluster sizes in our system are determined by the wavenum-
ber qmax corresponding to the maximum growth rate lmax. The
cluster size is approximately half of the most unstable wave-
length, thus l E p/qmax. We have calculated qmax for different
values of rc to ascertain this relationship. Initially, with high rc

values and only active particles (Y(rc�r) = 1), we found lmax =
0.673 and qmax = 1.758, resulting in a cluster size of l E 1.787.
As rc decreases and passive particles become prevalent, a shift
occurs around rc E 30, with qmax becoming

ffiffiffiffiffi
r0
p

=2 (where r0

represents the average density of passive particles), suggesting
l / 2p=

ffiffiffiffiffi
rc
p

.

For numerical simulations, we considered r = 10 as the
cluster boundary, necessitating a correction to the predicted
results. The corrected results are illustrated in Fig. 4b, which
compares the average radius of clusters ( %R) as a function of rc.
The figure shows that while there are numerical discrepancies,

the trends predicted by linear stability analysis (LSA) align with
the trends observed in the simulations. These discrepancies
could stem from the limitations of LSA’s linear approximation,
especially in areas of strong nonlinearity, and the influence of
spatial/temporal resolution, initial conditions, and boundary
conditions on numerical simulations.

Despite the numerical differences, our model qualitatively
captures the key behavior of the system, demonstrating its
utility in understanding the physical properties of the system.

In summary, the results from the LSA are generally consis-
tent with our numerical simulations.

4.2 Formation of Turing-like patterns

In fact, in the original system without QS, the Turing-like
pattern can also be created, when the diffusion coefficient Dr

is adjusted to a larger value. Therefore, it is interesting to
examine how such a non-QS system develops a Turing-like
pattern and whether the underlying mechanisms in the QS
and non-QS systems are identical.

To address this, we juxtapose the particle density and
chemical concentration distributions of both systems and
conduct a radial distribution function (RDF) analysis on the
particle density distribution within individual clusters. Our
findings indicate that the Turing-like pattern in the non-QS
system notably differs from that in the QS system, particularly
concerning particle density distribution and cluster size (refer
to Fig. 7).

In the scenario involving QS, it is evident that due to
diffusion, the distribution of colloidal particles within a cluster
is more dispersed, resulting in a larger cluster size compared to
the non-QS case. Given the system’s finite size, accommodating
these larger clusters necessitates a reduction in cluster quan-
tity. This reduction is evident as initial clusters merge and
continuously adjust their positions to achieve equilibrium (this
behavior is observed during the evolution). The corresponding
radial distribution function reveals a nearly uniform distribu-
tion of particles within clusters, with a peak at the cluster
edges. This peak arises from the concurrent inward flow of
active particles and outward diffusion at the cluster bound-
aries, culminating in a local density extremum.

Conversely, in the absence of QS, while the chemical field
distribution remains largely unchanged, the particle density within
clusters is centrally concentrated and diminishes outward. The
RDF decreases monotonically with the increasing radius. Since the
chemotactic strength of the particles is just balanced with the
diffusion strength, the aggregation of the particles will not be
particularly tight. Benefiting from this, the production, diffusion,
and degradation of the chemical substances can be balanced. The
overshoot of chemical substance concentration, which causes the
reversal of the chemical gradient, will not occur at the location of
the original low chemical substance concentration. And when
there is the introduction of QS, it leads to a more dispersed
high-density particle region and a larger cluster size.

It is the presence of QS that prevents particle aggregation to
the extent that would reverse low chemical concentrations in
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certain areas, thereby preserving the stability of cluster struc-
tures and eliminating spatio-temporal oscillatory behaviors.
This understanding leads us to conclude that QS, characterized
by local density-dependent activity, cannot be merely viewed as
a shift in the parameter space of the original non-QS system.
Instead, it introduces a novel instability mechanism, altering
particle mobility and enhancing diffusion’s role in the system.
By counteracting chemotaxis, QS mitigates the impact of delay-
induced instability, altering both cluster size and oscillatory
behavior.

In summary, the pivotal discovery of this study is the QS-
induced transition from oscillations and waves to Turing-like
patterns, governed by the variation of a single parameter: the
QS-threshold rc. While static Turing-like patterns have been
identified in non-QS systems, as mentioned in ref. 24,
our analysis highlights distinct differences in their outward
appearances and underlying mechanisms. The primary distinc-
tion is the particle density distribution within clusters. In the
presence of QS, clusters exhibit a pronounced core–shell struc-
ture with a peak particle density at the boundary. In contrast,
without QS, particle density tapers off from the center to the
edges, as depicted in Fig. 6. This stark contrast underscores
that the Turing-like patterns, both with and without QS, stem

from disparate instability mechanisms. Referring to ref. 24, the
emergence of Turing-like patterns is attributed to the equili-
brium between chemotaxis and diffusion strength of the active
particle. In our study, the formation of a Turing-like pattern,
influenced by QS, primarily arises from the competition
between chemorepulsion of active Janus particles and diffusion
from their passive counterparts. When the particle density at
the cluster’s center surpasses rc, active particles deactivate,
transitioning to passive particles. These passive particles, solely
driven by diffusion, contest with active particles gravitating
towards the center, achieving a competitive equilibrium at the
boundary.

Moreover, it is interesting to note that mutual effects of
active and passive particles on each other have been reported in
the literature studies,20–22 including some immobilization and
localization phenomena, but without considering QS as we
have in our study. Similarly, in both kinds of system, the
passive particles are driven by active Janus particles, causing
them to be compressed and thus to undergo aggregation and
immobilization, resulting in a stable pattern. However, the
underlying mechanisms are different. In these previous works,
the driving mechanism is purely internal, with the photoche-
mical activity of defects residing in the colloidal matrix produ-
cing a solidification effect similar to that induced by a blast.
In our case, the movement of active Janus particles is also
influenced by chemotaxis arising from chemical gradients in
the surrounding environment, and the formation of individual
clusters is the result of a competing balance between chemo-
repulsion and passive particle diffusion.

Besides, in Bäuerle et al.’s study,33 silica particles of dia-
meter s = 4.4 mm with a 30 nm-thick carbon film were
suspended in a critical mixture of water-lutidine at T = 25 1C.
Each particle was illuminated individually using a scanned
laser beam (beam waist w = 5 mm) aimed at the particle’s
center, causing self-propulsion opposite to the capped hemi-
sphere. This setup is particularly relevant to our study as it
demonstrates the formation of clusters and patterns under
varying concentration thresholds (cth). As cth decreases, the
clusters’ particle density reduces and their size increases,
paralleling the trends we observed in our simulations. More-
over, the interplay of motility switching and particle interac-
tions, as controlled by the laser illumination intensity, is crucial
for the formation of static clusters and patterns. Such experi-
mental observations strongly align with our numerical find-
ings, highlighting the significance of motility changes and
particle interactions in cluster formation. Our study, comple-
mented by the insights from Bäuerle et al.’s experiments,
underscores the importance of these factors in understanding
and predicting the behavior of such complex systems.

5 Conclusions

In conclusion, QS profoundly impacts pattern formation in
chemically repulsive active colloids. Upon introducing QS
into the system, stable Turing-like patterns emerge due to

Fig. 7 (a) and (c) Heat map of the particles’ local density and local
chemical concentration distribution of the Turing-like pattern induced
by QS. (b) and (d) Heat map of the particles’ local density and local
chemical concentration distribution of the static Turing-like pattern
formed without QS (Dr = 1.5, ka = 0.9, other parameters as in Fig. 2). (e)
and (f) Radial distribution functions (RDF) g(r) = r(r)/r0 (calculating the
mean value by taking the center of each cluster circle as the starting point),
corresponding to Fig. a and b, respectively. The orange dashed line g(r) =
rc/r0 in (e) represents the division between the passive particle region and
the active particle region, above the dashed line: passive particles; below:
active particles.
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QS-induced instabilities, stemming from the competition
between diffusion and chemotactic forces. Our findings
emphasize the delicate balance the system maintains between
collective particle behavior and chemotactic forces. Data sug-
gest an optimal value for rc, below which the efficiency of
chemical repulsion diminishes. At rc = 11, particles seem
incapable of fully avoiding high-concentration regions. Addi-
tionally, the results from the linear stability analysis align well
with our numerical simulations.

While the system can form Turing-like patterns in certain
parameter spaces without QS, the nature of the patterns under
QS induction is distinctly different. QS plays a pivotal role in
the behavior of chemotactic systems. Many such systems,
including bacteria, exhibit this characteristic, profoundly influ-
encing pattern formation. Our discoveries not only offer
insights into real-world bacterial systems but also hint at
potential applications in designing colloids with tunable self-
assembling patterns. Furthermore, these observations resonate
with the idea that ‘‘quorum sensing plays a significant role in
influencing particle chemotactic behavior.’’ While the specific
optimal value for rc at which chemical repulsion is most
effective might vary with other system parameters, our analysis
provides foundational understanding of this phenomenon.

In our current research, we have focused solely on the
combination of chemical repulsion and activity loss at high
local densities. In reality, more research avenues exist for this
system. Explorations in other parameter spaces remain intri-
cate, making it challenging to discern patterns. Broadly speak-
ing, like several other scenarios, preliminary studies indicate
that the system’s behavior, when coupling chemotaxis with low-
density inactivity, fundamentally remains similar to the scenar-
ios without QS. Conversely, under conditions of coupling
chemotactic force with high-density inactivity, as the sensing
threshold changes, the system exhibits structures like large
droplets, bands, and large bubbles, consistent with previous
research findings.41 All in all, more detailed investigations
warrant our continued efforts in future endeavors.
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