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Unravelling the structure of the CSD cocrystal
network using a fast near-optimal bipartisation
algorithm for large networks†

Tom E. de Vries, Elias Vlieg and René de Gelder *

Networks, consisting of vertices connected by edges, are an important mathematical concept used to

describe relationships between people, roads between cities, reactions between chemicals, and many other

interactions. Such a network can be created by extracting cocrystals from the Cambridge Structural Database

(CSD). This network describes which compounds can form cocrystals together and can, for example, be used

to predict new cocrystals using link-prediction techniques. Bipartiteness is an important property of some

networks wherein the vertices can be separated into two groups such that edges only point from one group

to the other. Knowing whether a network is bipartite can make studying its structure considerably easier. If a

network is nearly bipartite except for a number of outlying edges, one might want to identify and remove

those edges, thereby bipartising the network. The CSD cocrystal network was previously found to be close to

bipartiteness. Truly bipartising it could improve the accuracy of link-prediction and give insight into the hidden

structure of the network. Many algorithms exist for exactly finding the optimal bipartisation for a nearly-

bipartite network, but the time it takes to complete such algorithms increases exponentially with the size of

the problem. In some cases, an exact solution is unnecessary and a ‘good enough’ bipartisation is sufficient.

We have developed an algorithm that can find a near-optimal bipartisation within reasonable time, even for

very large networks, and used it to unravel the structure of the CSD cocrystal network. We obtained a

bipartisation that leaves 96% of the network intact, and we were able to identify ‘universal’ coformers that do

not conform to the bipartite nature of the network. By applying a clustering algorithm to the bipartised

network, we were also able to identify anticommunities of coformers.

1 Introduction

Networks are mathematical constructs that can be used to
describe the relations between different entities. Common
examples include networks that describe roads between cities,
gene interactions, and social networks.1,2 A network is considered
bipartite if you can split it into two parts, such that there are only
connections from one part to the other, and no connections
inside each part. Bipartiteness is an important property that can
be exploited in network science methods like link-prediction.3

Determining whether or not a network is bipartite is a well-
studied problem, along with the equivalent two-colouring
problem.4 A more complex extension of this problem is that of
bipartisation, also known as odd-cycle transversal (OCT): starting
with a non-bipartite network and turning it into a bipartite
network while changing as little as possible.

The network that we are particularly interested in here is the
one created from the list of known cocrystals extracted from the
Cambridge Structural Database (CSD). This network represents
a large number of co-crystallising compounds called coformers,
and describes which pairs of these coformers can form
cocrystals together. Devogelaer et al.5 have examined the CSD
cocrystal network by looking at its degree distribution and
applying clustering algorithms. By locally counting bipartite and
monopartite paths it was shown that 99% of the cocrystal
network behaves in a bipartite manner. Other works have
claimed that the network is monopartite, but base this assertion
solely on the fact that it is not perfectly bipartite.6 The method
used by Devogelaer et al. to determine how close the network is
to true bipartiteness is somewhat heuristic, and there are still
questions left unanswered: can we use a bipartisation algorithm
to verify this percentage in a more exact way? Is the bipartite
behaviour found by Devogelaer et al. a local property of
individual links, or is it a global property of the network as a
whole? Can we use our bipartisation algorithm to identify those
coformers that do not fit the bipartite behaviour of the rest of
the network and behave in a monopartite or universal manner?
And lastly, can we use our algorithm to more clearly visualise
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the structure of the network as a whole and examine it in more
detail?

Bipartisation algorithms can be used to see how close a
network is to being bipartite by examining how many of its
vertices or edges need to be removed. Identifying ‘monopartite’
elements in a network can help improve link-prediction
methods that rely on the bipartite nature of a network by
removing those monopartite elements. Bipartisation algorithms
have applications in e.g. quantum computing, wherein a process
called quantum annealing requires the bipartisation of a
network that represents an optimisation problem to be solved
by the quantum computer.7

There are various ways of bipartising a network such as
deleting vertices, contracting edges, and deleting edges. All of
these have been studied extensively, and exact algorithms that
can find the optimal bipartisation have been designed for all of
them. However, bipartisation by any of these three methods is
an NP-hard problem; i.e. the time it takes to complete an
algorithm scales exponentially with the size of the problem.8–10

In practice, this means exact bipartisation algorithms cannot be
used for large networks, as the completion time would quickly
exceed the age of the universe. Networks used to test exact
bipartisation methods contain at most a few hundred vertices.11

The CSD cocrystal network contains over 8000 vertices, so it is
definitely too large for exact bipartisation algorithms. To
bipartise large networks, it is necessary to use what we call ‘near-
optimal’ algorithms. Such algorithms are designed to deliver a
‘good enough’ approximation of the optimal bipartisation that
would have been delivered by an exact algorithm. This does
mean that the algorithm may remove slightly more of the
network than is strictly necessary, but since the alternative is not
feasible to begin with, near-optimal algorithms are the only
option for the bipartisation of large networks.

We have developed a new near-optimal edge bipartisation
algorithm for use in large networks. Our algorithm makes use
of link-prediction like scoring functions that grade edges
according to how well they fit in a bipartite network (see section
2). Other near-optimal bipartisation algorithms such as that
designed by Concas et al. use eigenvalue decompositions, which
are still quite time consuming.12 Their method also requires
several parameters to be tuned to work correctly, which we
would like to avoid. Our method is designed to rapidly break
down the network into a bipartite ‘seed’ network, and then
grow a new bipartite network from that seed. Application of our
method to the CSD cocrystal network showed that it is at least
96% bipartite, and allowed us to closely examine its structure.

2 Methods
2.1 Important concepts

Here we briefly introduce some important network science
concepts.

A network is represented by a graph G = {V,E,W} consisting
of a set of N vertices V = {vi|i ∈ [1…N]}, a set of M edges E =
{(ej,1,ej,2)|j ∈ [1…M]}, and a set of weights W = {wj|j ∈ [1…M]}.
An edge ej = (ej,1,ej,2) points from vertex vej,1 to vertex vej,2 and has

weight wj. Each vertex v has a degree deg(v) equal to the sum of
the weights of the edges connected to v. Graphs can be
represented by an N × N adjacency matrix A, defined as:

Ai;j ¼
wk

0

∃k : ek ¼ i; jð Þ
otherwise

(
(1)

The cocrystal network is an unweighted and undirected network
with no self-loops, which means that all its weights are 1, that if
(i, j) ∈ E, then (j, i) ∈ E, and that Ai,i = 0. Thus, A is a
symmetrical N × N matrix with 1 at the location of two vertices
that share an edge, and 0 everywhere else. Because all the
weights are equal to 1, the degree of a vertex v is equal to the
number of edges connected to v.

A network is defined to be bipartite if its vertex set V can
be divided into two non-empty subsets V1 and V2 with V1 ∩
V2 = ∅ and V1 ∪ V2 = V such that for every edge (i, j) ∈ E, if vi
∈ V1, then vj ∈ V2 and vice versa. In other words, all edges
have one end in V1 and the other end in V2.

2.2 Building the CSD cocrystal network

We used the CCDC program ConQuest13 and the CSD python
API to search the CSD (version 5.43; November 2021 + 4
updates).

In order to find all the cocrystals in the CSD we extracted
every entry that contains two distinct compounds, is organic,
contains no ions, is error-free, and has its three-dimensional
coordinates determined (this includes structures determined
from powder data). It should be noted that the fact that we are
using the CSD with these filters could lead to certain bias in our
data as we do not include cocrystals that do not form well-
defined 3D structures. Next, we used the classifier algorithm
written by Devogelaer et al.5 to separate the entries into
cocrystals, solvates, and entries with a gas molecule as part of
their structure, which uses lists of commonly used solvents and
gasses. A list of CSD refcodes for all resulting cocrystals is
available as ESI.† The cocrystal entries are split into their
constituent parts (called coformers), and a network is
constructed with these coformers as its vertices and the
cocrystals they form as the edges. If a coformer has multiple
enantiomers or multiple refcodes in the CSD, one of them is
taken as the representative for all of them, and their vertices are
combined into one. For example, if a coformer X has two
enantiomers XR and XS, then we create one vertex ‘X’ that
combines all cocrystals containing XR, XS, or the racemic mixture
XRS. Finally, an adjacency matrix is constructed as described in
section 2.1.

2.3 Bipartisation

The algorithm begins by loading the adjacency matrix A for
the network that needs to be bipartised, as well as the list of
edges E in the adjacency matrix. The algorithm then
bipartises the network in three major steps:

Step 1 is to identify every three-cycle in the network and
remove the ‘least bipartite’ edge from each one. An n-cycle is
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a circular path with a length of n edges. Three-cycles cannot
exist within a bipartite network because there is no way to
assign all three vertices to a bipartite set without having two
connected vertices in the same set. This is demonstrated in
Fig. 1. In the rest of this paper, we will use green squares and
blue circles to indicate the two bipartite sets. Vertices that
are not (yet) assigned to a particular bipartite set will be
denoted by a purple diamond.

We want to remove the ‘least bipartite’ edge from each
three-cycle. To identify the ‘least bipartite’ edge we define a
scoring function that grades edges based on how bipartite
they behave. This is done by counting the number of three-
cycles and four-cycles that an edge is part of. A four-cycle
suggests good bipartite behaviour, while a three-cycle
suggests poor bipartite behaviour. Ideally, we would also like
to include longer cycles, but this would exponentially
increase the time needed to complete the algorithm. Written
out, the score for an edge (i, j) in the adjacency matrix A is:

Score i; jð Þ ¼
X

n;mð Þ∈E= i;jð Þ
Ai;nAj;m þ Ai;mAj;n
� �

−
XN
k¼1

Ai;kAj;k
� �

: (2)

The first term in eqn (2) counts the number of four-cycles
that the edge (i, j) is part of. This is done by finding any other
edge (n, m) and checking whether n shares an edge with i
and m shares an edge with j, or vice versa. The second term
counts the number of three-cycles that the edge (i, j) is a part
of by checking for the existence of a vertex k that shares an
edge with both i and j. This scoring function is related to
scoring functions employed in the link-prediction methods
that the cocrystal network is used for.3 The main difference
being that this score is not designed to predict compatibility
between i and j, but rather how well the edge (i, j) fits into
the entire bipartite network.

Three-cycles are identified by going through E, and checking
for each edge (i, j) whether there exists a vertex k such that Ai,k =
Aj,k = 1. If such a k exists, then the vertices i, j, k form a three-
cycle. To remove the cycle, we give the edges (i, j), (j, k), and (i, k)
each a score using eqn (2) and remove the edge with the lowest
score. An example of this is shown in Fig. 2. If two edges have
the same score, one is removed at random.

The coloured three-cycles in Fig. 2 are not the only ones in
the example network, but removing the two red edges is
enough to eliminate all other three-cycles as well. Because
the three-cycles are identified in essentially random order, it
is also possible that more than one edge ends up being
removed from a three-cycle. This can happen if one of the
two edges that are not removed as part of one three-cycle is
later removed as part of an adjacent three-cycle. This excess
removal is dealt with in step 3.

In general, removing all three-cycles is not enough to fully
bipartize a network. The obvious next step would be to remove
five-cycles and higher order odd cycles until the network is
bipartite. However, as stated previously, identifying cycles longer
than three takes exponentially more time. Even finding five-

cycles takes on the order of 106 times as many calculations, so
this is not an attractive option.

Instead, step 2 is to continue removing the lowest scoring
edge or edges in the network until full bipartisation is achieved.
This is done by calculating the score for every remaining edge
in the network using eqn (2), removing the edge(s) with the
lowest score, and then recalculating the score for the remaining
edges. Because all three-cycles have been removed in the first
step, the second term in eqn (2) can be left out in step 2 to save
time. Finally, the network is tested for bipartiteness using the
“is_bipartite()” function in the Networkx python package.14 This
cycle repeats until we are left with a perfectly bipartite
subnetwork which we will call the bipartite ‘seed’ (Fig. 3).

The removal process in steps 1 and 2 does not
immediately lead to the desired bipartite network. In our
tests on the CSD cocrystal network over 70% of the edges are
removed in steps 1 and 2, but it does leave us with a seed
network comprised of the most well-behaved edges.

Step 3 is to start with this seed and regrow a bipartite
version of the original network. This is done by calculating
the score in eqn (2) for all edges in the original network
(before bipartisation), and then attempting to restore each
removed edge in order of score from highest to lowest. In
each attempt, the edge is restored and the network is tested
for bipartiteness. If the network is still bipartite, the edge is
kept, otherwise, it is removed permanently.

The order in which we restore edges matters, as the
bipartisation is often only broken by a combination of

Fig. 1 Three-cycles cannot be bipartite because once any two vertices
are assigned to a set (green squares or blue circles); the third vertex
cannot be assigned to either set without breaking the bipartisation.

Fig. 2 An example network with two of its three-cycles marked to be
removed. Each edge in these three-cycles is marked with its score.
The lowest-scoring edges are marked in red.
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multiple edges. Consider the four edges at the top of Fig. 4,
the bipartisation is only broken once all four are restored, so
whichever edge comes last will not be restored. Ordering the
edges by score is a sensible choice, as keeping edges that are
well connected in a bipartite manner should lead to a larger
network in the end. It is still possible for two edges to have
the same score, in which case they are restored in the order
in which they appear in E. In the example shown in Fig. 4,
the four edges at the top of the network all have the same
score, and will be restored in effectively arbitrary order. This
means in principle any three of the four can be restored and
there is no way of knowing which three are the ‘correct’ ones.
In a larger network a scenario like this is less likely as
complex structures should cause the scores to vary more.

To visualise the bipartisation, the now bipartised
adjacency matrix A can be reordered by permutation of V
such that all vertices that belong to the same bipartite set are
grouped together. In principle, this final reordering is not
required for the bipartisation of the network, but it makes
visual examination of the adjacency matrix easier by clearly
splitting the adjacency matrix into the two bipartite sets. The
reordering is done by placing all vertices in V1 first and all
vertices in V2 last. To get a clearer view of the structure of the
network, the vertices in V1 are arranged in increasing order
of their number of bipartite edges. The vertices in V2 are
arranged in decreasing order of their number of bipartite
edges. This way the vertices with the largest number of
bipartite edges are grouped together in the ‘center’ of the
matrix. The same reordering can be applied to the original
matrix O. This will result in two block matrices of the
following shapes

O ¼ M1 B1

B2 M2

� �
A ¼ 0 B1

B2 0

� �
; (3)

where Mi refers to the monopartite edges between vertices in
the i-th bipartite set, and Bi refers to the bipartite edges
starting from the i-th bipartite set. In undirected networks
like the one we use, B1 and B2 are mirror images of one
another. Note that B1 and B2 appear in both O and A. This is
because the only difference between the bipartised matrix A
and the reordered original matrix O is that the edges that do
not fit in the bipartisation (the monopartite edges in M1 and
M2) have been removed, so the other parts of the matrices
are identical.

Appendix A contains a pseudocode description of the
bipartisation algorithm.

2.4 Clustering

To further examine the structure of the cocrystal network, we
can use a clustering algorithm to split the two bipartite sets into
clusters of vertices that behave in similar manners. This
clustering is done by first calculating the one-mode projections
of the two bipartite sets.15 Modules for calculating one-mode
projections are available in the Networkx package for python.
Calculating the one-mode projections will result in two graphs,
each containing all vertices from one of the two bipartite sets.
In these one mode projections we use eqn (4) to calculate the
weights of the edges:

w i; jð Þ ¼ N ið Þ∩N jð Þj j
N ið Þ∪N jð Þj j : (4)

Here N(i) refers to the neighbours of vertex i: the set of vertices
that share an edge with vertex i in the original network (before
bipartisation); eqn (4) is also referred to as the Jaccard index.
These weights are then used to calculate a distance matrix,
where the distance between two vertices is simply d(i, j) = 1 −
w(i, j). Next we use Ward's hierarchical clustering method:16

each vertex starts in its own cluster, then the two clusters that
have the lowest distance are combined into one cluster. Next,
the distance between the new cluster and all the older clusters
is calculated according to

d p; qð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qj j þ sj j
qj j þ sj j þ tj j d q; sð Þ2 þ qj j þ tj j

qj j þ sj j þ tj j d q; tð Þ2 − qj j
qj j þ sj j þ tj j d s; tð Þ2

s
;

(5)

where p is the new cluster created by combining clusters s and
t, and q is one of the old clusters. This cycle of combining the
closest clusters and recalculating the distances is repeated until
exactly two clusters remain. This is done for the one-mode
projections of both bipartite sets and we are left with four
clusters in total. We choose to stop at two clusters because we
found in our tests that adding more clusters did not lead to a
meaningful partitioning. It is possible that more insight can be
gained from stopping at different numbers of clusters when
examining other networks.

Fig. 4 An example network with its removed edges marked with red
dotted lines. Edges are restored until no more edges can be restored
without breaking the bipartite nature of the network.

Fig. 3 An example network with the lowest scoring edges marked in
red. Once these are removed, a bipartite “seed” network remains.
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3 Results and discussion

Before we discuss the CSD cocrystal network described in
section 2.2, we want to check that our algorithm can also
bipartise networks of similar size within a reasonable amount
of time, even when they are not as close to being bipartite as
the CSD cocrystal network. For our first test we take the
bipartised cocrystal network and use its now known bipartite
groups to add new edges that go against the current
bipartisation. We add one random ‘monopartite’ edge for
every two bipartite edges in the CSD network. This results in
a new network with the same number of vertices and nearly
1.5 times the number of edges. The algorithm was able to
bipartise this new network in approximately twice the time it
took for the original network. As we will show later, the CSD
cocrystal network is approximately 96% bipartite, meaning
we need to remove 4% of the edges to bipartise it. If the
bipartite sets we found in the CSD network were used for this
new ‘monopartised’ network, we would find that it is
approximately 64% bipartite because the number of bipartite
edges has not changed, but the total has increased by a factor
of 1.5. In reality, the algorithm finds an alternative division
and can bipartise the network while retaining approximately
80% of the edges.

As a second test we generate a random fully connected
network with the same number of vertices as the CSD cocrystal
network, but four times the number of edges. It took about five
times as long to bipartise this network, but it was still possible
to obtain a bipartisation that retains approximately 60% of the
edges despite the complete lack of inherent bipartite structure.
The theoretical minimum is 50% for any network, even
networks where every vertex connects to every other vertex, so
60% is not bad for a random network.

Now we move on to the CSD cocrystal network. Visualising
a graph with over 8000 vertices in such a way that
information can still be gathered is not realistic. Instead we
choose to visualise the adjacency matrix in a scatterplot
where each dot represents a 1, and 0’s are represented by
empty spaces. Such a scatterplot for the original cocrystal
network is shown on the left hand side of Fig. 5.

The matrix is symmetrical, which it should be as our
network is undirected. This adjacency matrix shows no sign of
bipartiteness yet. One notable feature is the apparent line along
x = y. This line, however, is an illusion caused by the finite dot
size and the fact that the matrix is symmetrical in the line x = y.
If there is a dot very close to this line, then there must be
another dot on the other side. These dots can overlap, giving
the appearance of a dot on the line itself. Dots close to the line
are relatively common because of the way the network is
constructed; if a cocrystal is added and neither of its coformers
are already in the network, those coformers will appear side by
side in the adjacency matrix. One might also notice what looks
like a number of slightly denser clusters near the bottom-right
of the figure, but these are again caused by the fact that similar
compounds often have similar refcodes in the CSD. Because
cocrystals are added in alphabetical order of refcodes, these
similar compounds are often placed close to one another. We
can get rid of these artifacts by randomising the order of the
coformers as is shown on the right hand side of Fig. 5.

The original network contains 8506 vertices connected by
11668 edges. After steps 1 and 2 of the algorithm have finished,
we are left with a seed network of 823 vertices connected by
3252 edges. This seems like a poor result, as most of the
network was lost, but by applying step 3 we can recover almost
all of the removed edges. After step 3 has completed, we once
again have 8506 nodes now connected by 11200 edges. Thus,

Fig. 5 (Left) A scatterplot of the original adjacency matrix belonging to the CSD cocrystal network. Each dot represents the position of a 1
(cocrystal) in the adjacency matrix. Note that the y-axis increases downwards as it would in a matrix representation. (Right) A scatterplot of the
same network after the order of labels of the coformers has been randomised.
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nearly 96% of the original edges are still in the network. Since
our algorithm is not exact, it is possible that there is a way to
retain even more of the network after bipartisation. Therefore,
96% is a lower bound for the percentage of bipartite edges. Note
that the estimate made by Devogelaer et al.5 that 99% of edges
behave bipartite was based on the number of bipartite and
monopartite paths around an edge. This is a somewhat
heuristic way of estimating how close the network is to being
bipartite, and is based only on local analysis. What we can
measure here is a hard lower bound, rather than a rough
estimate. Because so many edges are left after bipartisation, we
can now say that the bipartite behaviour found by Devogelaer
et al. is not just a local property of individual links, but a global
property of the entire network.

After the bipartisation, we reorder the vertices such that
the bipartisation becomes more apparent in the adjacency
matrix. The result of the bipartisation is shown in Fig. 6.

Fig. 6 shows a clear block matrix structure with two empty
blocks and two mirrored blocks filled with edges. The size of
the two bipartite sets can be seen by looking at the dimensions
of the filled blocks. Since the network has been bipartised, any
edge in the network has one end in V1 and one end in V2. In the
same way any dot in Fig. 6 must have one coordinate in V1 and
one in V2. Within each bipartite set, the vertices are ordered
such that those with the most edges to the other set are placed
closest to the middle as described in section 2. This leads to the
cross shape visible in Fig. 6. The bipartite sets are approximately
equal in size at just over 4000 vertices, suggesting most of the
coformers behave similarly with respect to the bipartite nature
of the network. To show why that is more surprising than one
might think, we examine the degree distribution of the network.
Looking at the degree distribution of the network in Fig. 7, it is
clear that there is a small number of vertices that are very well

connected (the bottom right of Fig. 7), while the vast majority of
vertices have at most a handful of edges (the top left of Fig. 7).

One might expect the really well-connected vertices to form
one bipartite set, as they must each connect to a very large
number of poorly-connected vertices, which would then form
the other bipartite set. In that case, one bipartite set would have
been far larger than the other, and we would conclude that the
coformers represented by the well-connected vertices share
some unique quality that sets them apart from the rest.
However, Fig. 6 clearly shows that the bipartite sets are nearly
equal in size. This instead tells us that as a group, the well-
connected vertices, and the coformers they represent, behave no
differently than all the others. We can confirm this by noting
that the degree distributions of the individual bipartite sets
shown in Fig. 8 have the same shape as the degree distribution
of the entire network in Fig. 7.

Our bipartisation algorithm leaves all vertices intact. This
means we can permute the original matrix, including all the
removed edges, to match the way we reordered the bipartised
matrix. This will allow us to clearly visualise the near-
bipartite nature of the original CSD cocrystal network. The
result of this reordering is shown in Fig. 9.

To make the bipartite behaviour more obvious, edges are
marked in blue if they connect the two bipartite sets defined by
the bipartised network (96%), and in red if they lie within only
one of the two bipartite sets (4%). It is plain to see that the
network was indeed close to bipartiteness to begin with. The
two bipartite blocks are much more densely populated than
their ‘monopartite’ counterparts. An interesting feature is that
the densest population of monopartite edges coincides with the
‘center’ of the matrix, where the vertices with the most bipartite
edges are concentrated. This suggests that a lot of the non-
bipartite edges come from coformers that have been used quite
often in successful experiments. It is tempting to think that
these coformers show ‘universal’ behaviour because they are
used more often in experiments. However, many of the
coformers near the center, which are the coformers that are
used the most, have no monopartite edges at all. For example,

Fig. 6 The adjacency matrix of the bipartised cocrystal network. The
vertex labels are marked on both x- and y-axes.

Fig. 7 Degree distribution of the CSD cocrystal network in log–log scale.
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tetramethylpyrazine has 51 edges, none of which are
monopartite. This should mean that there are some coformers
that have some kind of universal quality that make them
capable of cocrystallising with a large variety of other coformers,
even if they lie in the same bipartite set. However, the bipartite
nature of the network as a whole shows that overall, the
coformers cocrystallise in complimentary pairs.

We can now identify the coformers that have the highest
number of ‘monopartite’ edges. These ‘universal’ coformers do
not behave in the same way as the others within the network.
The term ‘universal’ suggests that these coformers are not
selective at all, however, most of these universal coformers still
have a lot more bipartite than monopartite edges. It is expected
that they have some chemical characteristics that explain this

universal behaviour. To examine this we extract the nine most
monopartite coformers from both bipartite sets. These
coformers are shown in Fig. 10 and 11. Most of these ‘universal’
coformers do indeed have groups that can serve as hydrogen
bond donors, as well as groups that can serve as hydrogen bond
acceptors. It is likely that a large number of coformers with only
hydrogen donor groups belong to one bipartite set, and a large
number with only hydrogen acceptor groups belong to the
other. This would account for some of the bipartite nature of
the network, and why these universal coformers have so many
monopartite edges.

There are a few coformers, like benzoquinone and
triphenylphosphine oxide, that do not have both hydrogen bond
acceptor and donor groups. These coformers must have another
universal property that allows them to go against the bipartite
nature of the network. Benzoquinone for example, has two
hydrogen bond acceptor groups, but no donor groups. We
examined all benzoquinone cocrystals found in the network,
specifically looking for coformers that cannot form hydrogen
bonds with benzoquinone. All of these coformers that we
extracted from the CSD have the ability to form π–π interactions.
It seems that these π–π interactions are how benzoquinone gets
around the bipartite nature of the network.

Identifying the universal coformers can be very useful in
cocrystal screening. On one hand, they can be removed from
the network to help improve the accuracy of computational
prediction techniques. On the other hand, the fact that they
cocrystallise with either bipartite set means they are good first
choices for experimental cocrystal screening. Lists of the most
popular coformers in each bipartite set (those with deg ≥ 20)
are available as ESI.† These lists are ordered by decreasing
number of monopartite edges, and then by increasing number
of bipartite edges. This way the most universal coformers are at
the top and the least universal ones are at the bottom.

We can now use a clustering algorithm to divide the two
bipartite sets further in an attempt to discover further structure
in the network. The clustering algorithm we use requires a fully

Fig. 8 The degree distributions of the two bipartite sets. Their shape is the same as the one for the entire network. This means the bipartite
structure of the network is independent of the degrees of the vertices.

Fig. 9 The adjacency matrix of the full non-bipartised network,
reordered in the same way as the bipartised network. Bipartite edges
are marked in blue, monopartite edges are marked in red.
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connected network. A network is considered fully connected if
every pair of vertices has a path of finite length from one to the
other. Since our network is not fully connected we extract the
largest connected subnetwork and bipartise it separately.
Examining the adjacency matrix for this largest subnetwork,
shown in Fig. 12, an interesting feature stands out. Both of the
blue bipartite blocks have a large rectangular void. This seems to
suggest that the bipartite sets A and B could be split into two
smaller sets A1, A2, B1, and B2, such that vertices from A1 and B1
never connect to one another. However, this is another illusion.
Because the matrix is ordered by the number of bipartite edges,
all the vertices with only one bipartite edge are grouped together

in both bipartite sets. If two vertices from opposite bipartite sets
both have only one bipartite edge, then they form their own
separate subnetwork, disconnected from the rest of the network.
Because we are only looking at the largest connected subnetwork,
such vertices will have been removed, forcing a void like this to
exist. What this does show is that the network contains a large
number of what we will call ‘dendrites’: vertices attached to the
larger network by only a single edge. These dendrites do not
contribute to the bipartisation of the network as you can always
attach a dendrite to a bipartite network without breaking
bipartiteness. On the other hand, their lack of neighbours can
cause issues when using Ward's clustering algorithm, because

Fig. 10 The nine ‘most universal’ coformers with the highest number of monopartite edges in the first bipartite set.

Fig. 11 The nine ‘most universal’ coformers with the highest number of monopartite edges in the second bipartite set.
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there is not enough information to properly place them in a
cluster. To help the clustering algorithm work properly we
decided to apply it only to vertices with a degree larger than 1.

Now that we have the largest connected subnetwork with
degrees larger than 1 we can use the one-mode projections
and Ward's clustering algorithm to split the two bipartite sets
into two smaller clusters. Once the clustering algorithm is
finished we again reorder the adjacency such that the newly
created clusters are separated from one another. Fig. 13
shows the clustered adjacency matrix, the colours along the
x- and y-axes indicate the four clusters.

The clustering shows that both bipartite groups have one
cluster that does not have a single monopartite link to itself (the
red and yellow clusters). This means that the clustering algorithm
has managed to identify a subsection of the network that was
already perfectly bipartite even before bipartisation. Both the red
and yellow clusters are examples of so called anticommunities:
clusters of vertices that do not connect to one another but do
connect to vertices outside the cluster. The ability to find
anticommunities is desirable in certain fields of research,12 but
we can also imagine practical applications in cocrystal screening.
Because none of the coformers in the red cluster cocrystallise
together, it is possible to make a ‘cocktail’ of all of them
combined in one solution. Adding a target coformer to this
cocktail solution would screen it for cocrystals with any of the
coformers in the red cluster in a single experiment.

It should be noted that in principle, experimental
verification of these anticommunities is needed to prove that
absolutely no cocrystals can be formed using the coformers in
these anticommunity sets. The CSD network only represents
cocrystallisation experiments that have already been performed
and reported in literature.

A full list of coformers found in the red and yellow
clusters, the anticommunities, is provided as ESI.†

4 Conclusions

We have successfully designed an algorithm that can
approximate an optimal bipartisation for large networks. Because
of the inexact nature of the algorithm, it is able to bipartise much
larger networks in a reasonable amount of time, unlike
algorithms designed to exactly find the optimal bipartisation. By
bipartising the network of cocrystals taken from the Cambridge
Structural Database(CSD), we were able to more closely examine
its structure. We showed that this network is at least 96%
bipartite, and that its bipartite behaviour is a global property of
the network. We were able to show that the bipartite behaviour is
independent of the degree of vertices, and we can identify
coformers that behave ‘universally’ rather than conform to the
bipartite structure. We found that the network has a relatively
dense ‘core’ of really well-connected vertices and a very large
number of ‘dendrites' branching off from that core. Finally we
were able to use one-mode projections and Ward's clustering
algorithm to split the bipartite sets into smaller clusters. This
allowed us to identify two anticommunities that form a perfectly
bipartite subnetwork together from the start. Since the coformers
in each of these groups do not interact with other coformers in
the group, they could be used in a ‘cocktail method’ for cocrystal
screening. These anticommunities could not have been identified
without bipartisation of the entire network.

Conflicts of interest
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A Appendix: bipartisation algorithm

What follows is a pseudocode description of our bipartisation
algorithm.

Fig. 12 The adjacency matrix of the largest connected subnetwork of
the cocrystal network.

Fig. 13 The adjacency matrix of the clustered network, each cluster is
represented by a different colour on the axes.
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