Isolated Ni-atom catalyst supported on Ti3C2Tx with an asymmetrical C–Ni–N structure for the hydrogen evolution reaction†
Abstract
Single-atom catalysts (SACs), distinguished by their exceptional atomic efficiency and modifiable coordination structures, find wide-ranging applicability, notably in the context of the hydrogen evolution reaction (HER). Herein, we synthesized a Ti3C2Tx-based Ni single-atom catalyst (Ni SA@N-Ti3C2Tx) by immersing a single Ni atom into the Ti vacancies of Ti3C2Tx and using a N-doping strategy. X-Ray adsorption fine structure revealed the formation of local Ni-N1C1 and an unsaturated C–Ni–N bridge configuration for isolated Ni species. Moreover, Ni SA@N-Ti3C2Tx exhibited an excellent HER performance with an overpotential of 63 mV at 10 mV cm−2. This work could enable use of MXene-based SACs in the HER.