Chiral electrochemiluminescence for simultaneous enantiomeric detection of aspartic acid and phenylalanine†
Abstract
The burgeoning interest in rapid, simultaneous multi-target detection has propelled advancements in chiral electrochemiluminescence (ECL) assays. This study presents the design and implementation of a potential-resolved dual-color ECL sensor, engineered for the concurrent detection of aspartic acid (Asp) and phenylalanine (Phe) enantiomers. The sensor array was meticulously constructed by amalgamating anodic chiral ECL probe Ru(phen)2(L-Cys) nanocrystals with cathodic ECL probe ZnO nanoflowers (ZnO NFs). This research explored the potential of executing multianalyte assays via a potential-resolved ECL strategy, contributing to the advancements in the field of chiral ECL assays.