Establishing a new methodology for determining the water absorbability of cellulose-derived materials via a vapor-monitoring headspace strategy
Abstract
In this research, for the first time, we introduce a vapor-monitoring headspace strategy to establish a new methodology for determining the water absorbability of cellulose-derived materials. The method involves detecting the water in the gas phase from various cellulose-derived materials after achieving the equilibrium state. By utilizing the headspace technique to monitor the change in water vapor pressure from bound water to free water, a change point indicating the water absorbability can be identified through fitting procedures. The study showed that the newly-established method possesses high precision (relative standard deviation ≤2.92%) and accuracy (relative differences ≤5.74%) for water absorbability analysis. The present method emerges as a facile and reliable tool for measuring water absorbability, and the introduction of the vapor-monitoring headspace strategy is anticipated to inspire the development of a new type of analytical method.