Fiber optic cadmium ion sensors based on functionalization of a magnetic ion-imprinted polymer†
Abstract
Cadmium poisoning is a chronic accumulation process, and long-term drinking of even low cadmium content water will cause kidney damage, so an ultra-low detection limit is particularly important. However, at the present stage, the traditional detection method cannot reach a sufficiently low detection limit, the response time is too long, and the cost of detection is very high, so that real-time measurement cannot be realized. Therefore, the traditional cadmium ion detection method has a slow response and an insufficient detection limit. This paper presents a fiber optic cadmium ion sensor functionalized based on an Fe3O4@SiO2@CS magnetic ion imprinting polymer (M-IIP). The sensor is based on the coupling characteristics of the optical microfiber coupler (OMC) cone region to achieve a highly sensitive response to the change in the cadmium ion concentration. M-IIP materials were prepared by surface imprinting polymerization to achieve low cross-sensitivity and thus improve the detection limit of the sensor. The results show that the developed fiber sensor has high specificity and a rapid response to cadmium ions. The experimental limit of detection (LOD) reached 0.051 nM within 0–1 μM with a response time of less than 50 s. Moreover, the proposed fiber cadmium ion sensor exhibits excellent performance in terms of sensitivity, stability, repeatability and biocompatibility.