Issue 5, 2024

A novel label-free capillary electrophoresis LED-induced fluorescence platform based on catalytic hairpin assembly for sensitive detection of multiple circulating tumor DNA

Abstract

Circulating tumor DNA (ctDNA) is a highly promising biomarker for the early diagnosis and treatment of gastric cancer (GC). However, there is still a lack of effective and practical ctDNA detection methods. In this work, a simple and economical capillary non-gel sieving electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform coupled with catalytic hairpin assembly (CHA) as the signal amplification strategy is proposed for quantitative detection of PIK3CA E542K and TP53 (two types of ctDNA associated with GC). We have reasonably designed two pairs of programmable oligonucleotide hairpin probes for PIK3CA E542K and TP53. Using a one-pot reaction, the presence of ctDNA triggers the cyclic amplification of CHA, forming numerous thermodynamically stable H1/H2 double-strands. The H1/H2 double-stranded DNA catalyzed by PIK3CA E542K and TP53 can be easily separated by NGCE due to their different lengths, enabling simultaneous detection of both ctDNAs. Under optimal experimental conditions, the detection limits of this strategy for detecting GC-related biomarkers PIK3CA E542K and TP53 are 20.35 pM and 19.61 pM, respectively, and can achieve 730-fold signal amplification. This strategy has a good recovery in the serum matrix. The results of this study show that this strategy has significant advantages such as high selectivity, a simple process, no special instruments and equipment, no need for fluorescence modification of hairpin probes in advance, high automation, low cost, and minimal sample consumption. This provides a powerful method for the detection of trace cancer biomarkers in the serum matrix with good application prospects.

Graphical abstract: A novel label-free capillary electrophoresis LED-induced fluorescence platform based on catalytic hairpin assembly for sensitive detection of multiple circulating tumor DNA

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2023
Accepted
22 Jan 2024
First published
29 Jan 2024

Analyst, 2024,149, 1548-1556

A novel label-free capillary electrophoresis LED-induced fluorescence platform based on catalytic hairpin assembly for sensitive detection of multiple circulating tumor DNA

Y. Sun, S. He, Y. Peng, M. Liu and D. Xu, Analyst, 2024, 149, 1548 DOI: 10.1039/D3AN01993D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements