Issue 2, 2023

Construction of an antibacterial low-defect hybrid layer by facile PEI electrostatic assembly promotes dentin bonding

Abstract

Dentin bonding is the most common form of human tissue repair among tissue-biomaterial adhesions, concerning billions of people's oral health worldwide. However, insufficient adhesive infiltration in the demineralized dentin matrix (DDM) always produces numerous defects in the bonding interface termed the hybrid layer, which causes high levels of bacteria-related secondary dental diseases, and less than 50% of the bonding lasts more than 5 years. Therefore, it is urgent and vital to construct an antibacterial low-defect hybrid layer to solve the durability-related problems. A DDM with a hydrogel-like surface formed by the hydration of highly-anionic non-collagenous proteins (NCPs) is firstly used as a template to electrostatically assemble polyethyleneimine (PEI). The formation of a stable antibacterial polyelectrolyte complex of PEI/NCPs rapidly eliminates NCP hydration capacity and significantly improves the infiltration of various adhesives. Simultaneously, both the PEI during the assembly and the PEI-assembled DDM can directly destroy a biofilm of S. Mutans on the DDM. Consequently, a long-term antibacterial and low-defect hybrid layer is successfully created, which greatly improves the bonding effectiveness. This helps to improve the clinical treatment of bacteria-based dental diseases and the tooth-restoration repair effect and prevent secondary dental diseases, having significance in clinical dentistry and providing insights for other tissue-biomaterial adhesions.

Graphical abstract: Construction of an antibacterial low-defect hybrid layer by facile PEI electrostatic assembly promotes dentin bonding

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2022
Accepted
08 Nov 2022
First published
09 Nov 2022

J. Mater. Chem. B, 2023,11, 335-344

Construction of an antibacterial low-defect hybrid layer by facile PEI electrostatic assembly promotes dentin bonding

Y. Lei, J. Xu, M. Pan, Y. Chen, X. Li, W. Zhu, C. Shu, T. Fang, H. Liao, Q. Luo and X. Li, J. Mater. Chem. B, 2023, 11, 335 DOI: 10.1039/D2TB01683D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements