Journal of Materials Chemistry A

View Article Online

View Journal | View Issue

CORRECTION

Check for updates

Cite this: J. Mater. Chem. A, 2023, 11, 17872

Correction: Improving the selectivity of hydrogenation and hydrodeoxygenation for vanillin by using vacancy-coupled Ru–N₃ single atoms immobilized on defective boron nitride

Haoxiang Fan,^{ab} Fengjuan Qin,^a Qi Yuan,^c Zhiyi Sun,^a Hongfei Gu,^a Wenjing Xu,^a Hao Tang,^a Shuhu Liu,^d Yu Wang,^e Wenxing Chen,^a Jia Li^{*c} and Huazhang Zhai^{*ab}

DOI: 10.1039/d3ta90150e

rsc.li/materials-a

Correction for 'Improving the selectivity of hydrogenation and hydrodeoxygenation for vanillin by using vacancy-coupled $Ru-N_3$ single atoms immobilized on defective boron nitride' by Haoxiang Fan *et al., J. Mater. Chem. A*, 2023, https://doi.org/10.1039/d3ta01384g.

The authors regret that the synthesis method for $Ru-SA/C_3N_4$ listed in Section 2.2. in their manuscript is incorrect, as it mistakenly repeats the synthesis protocol of Ru-SA/PBN in Section 2.1. The authors also regret that the wording for the synthesis of Ru-SA/NC in Section 2.3. is slightly unclear. The corrected synthesis methods for $Ru-SA/C_3N_4$ and Ru-SA/NC are provided herein.

2.2. Synthesis of Ru-SA/C₃N₄

First, the g- C_3N_4 was synthesized by heating urea in a closed alumina crucible in a muffle furnace at 600 °C (heating rate, 5 ° C min⁻¹) for 2 hours. Ru-SA/ C_3N_4 was prepared by adding 0.5 mL ruthenium acetylacetonate ethanol solution (1 mg mL⁻¹) to a dispersion of g- C_3N_4 (50 mg g- C_3N_4 in 50 mL ethanol). The remaining steps were the same as the preparation of Ru-SA/pBN- V_N .

2.3. Synthesis of Ru-SA/NC

First, trimesic acid (0.12 g) and DCDA (1.2 g) were mixed by grinding and heat-treated from room temperature to 900 °C with a heating rate of 5 °C min⁻¹ under a N₂ flow. After calcining for a further 2 hours at the desired temperature, the sample was naturally cooled to room temperature, denoted as NC. Ru-SA/NC was prepared by adding 0.5 mL ruthenium acetylacetonate ethanol solution (1 mg mL⁻¹) to a dispersion of NC (50 mg NC in 50 mL of ethanol). The remaining steps were the same as the preparation of Ru-SA/pBN-V_N.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

"Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. E-mail: Huazhzhai@bit.edu.cn

^bBeijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science, Beijing Institute of Technology, Beijing 100081, China

^eLaboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. E-mail: lijia@phys.tsinghua.edu.cn

^dBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100029, China

*Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China