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Sizing multimodal suspensions with differential
dynamic microscopy

Joe J. Bradley, * Vincent A. Martinez, Jochen Arlt, John R. Royer and
Wilson C. K. Poon

Differential dynamic microscopy (DDM) can be used to extract the mean particle size from videos of

suspensions. However, many suspensions have multimodal particle size distributions, for which a single

‘mean’ is not a sufficient description. After clarifying how different particle sizes contribute to the signal

in DDM, we show that standard DDM analysis can extract the mean sizes of two populations in a

bimodal suspension given prior knowledge of the sample’s bimodality. Further, the use of the CONTIN

algorithm obviates the need for such prior knowledge. Finally, we show that by selectively analysing

portions of the DDM images, we can size a trimodal suspension where the large particles would

otherwise dominate the signal, again without prior knowledge of the trimodality.

1 Introduction

Particle sizing is important across many industrial sectors. A
modern text1 lists seven categories of methods: microscopy,
sieving, electrozoning, laser diffraction (= static light scattering,
SLS), ultrasound extinction, sedimentation, and dynamic light
scattering (DLS). Some of these measure particles one at a time
(microscopy, electrozoning), others deal with collections of
particles en masse. Many are optically based (various light
microscopies, SLS, DLS).

These methods are calibrated against quasi-monodisperse
spherical particles, where the polydispersity, defined as the stan-
dard deviation of the particle size distribution (PSD) normalised by
the mean, is typically t10%, and can even be t2%.2 The sizing of
such particles poses few problems; reporting simply a mean
diameter and a polydispersity generally suffices.

While quasi-monodisperse spheres find use in research and
specialised applications, most real-life suspensions are signifi-
cantly polydisperse, often with strongly-peaked, multimodal PSDs.
Examples include raw and UHT milk, with a bimodal mixture of
large fat droplets and smaller casein micelles,3 sunflower tahini
with a reported trimodal PSD,4 and chocolate, where the PSD shifts
from trimodal to bimodal as refining proceeds.5 Multimodal PSDs
can result from aggregation, for example nanoparticles used for
biomedical applications often develop a second population of
large agglomerates when dispersed in a physiological buffer.6

Reporting a mean and polydispersity for a multimodal
suspension is almost meaningless; ideally, one wants to

capture the full PSD. In practice, it is often difficult to detect
multimodality in the first place, let alone obtain mean sizes for
each population.

Direct imaging is perhaps the ‘gold standard’ of sizing.
However, the PSD must be built up particle by particle, requir-
ing a large number, N, to accumulate statistics, with the relative

uncertainty dropping only weakly as N�
1
2. Moreover, it is

difficult to guarantee representative sampling, and preparation
(e.g. drying for electron microscopy) can affect the particles.

Scattering allows better statistical averaging, because the
scattering volume typically contains many more particles than
can be practically imaged. However, analysis requires inverting a
Laplace transform, where the unknown PSD occurs under an
integral sign, so that a unique solution does not exist and the
problem is notoriously noise sensitive.7 Nevertheless, various
scattering methods, especially SLS and DLS, are popular, with
many available commercial instruments and sophisticated ana-
lysis software (e.g. CONTIN for DLS). Impressive answers can be
obtained if some sample details are known. For example, SLS has
been applied to a multimodal suspension with 5 populations
varying in size over several orders of magnitude,8 but requires the
particles’ refractive indices which are not trivial to obtain.

Differential dynamic microscopy (DDM) is a technique for
high-throughput sizing in which the intermediate scattering
function (ISF), familiar from DLS, is obtained from images
without the need to resolve the particles.9 Since DDM and DLS
both access the ISF, there is significant overlap in data analysis.
However, DDM offers certain advantages, such as the ability to
cope with significant turbidity.10 Here we show that DDM is
well-suited for sizing multimodal suspensions because it
probes spatial fluctuations at very low wave vector, k, even
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t0.5 mm�1, by imaging large fields of view. Equivalent scatter-
ing angles of t21 in DLS require complex instrumentation,11,12

and are seldom attempted.
In SLS and DLS, the electric field scattered by a single homo-

geneous sphere of radius R at scattering vector k is given by13

bðkÞ ¼ 4

3
pR3

� �
DnðkÞPðkÞ; (1)

where Dn(k) is the difference in refractive index between the
particle and the solvent, and

P(kR) = 3[sin(kR) � (kR)cos(kR)]/(kR)3, (2)

is the form factor with P(kR - 0) - 1, typically accessible
experimentally only as the squared form factor P2(kR), Fig. 1. P(kR)
displays successive zeros, with the first at k0R = 4.493. Two
consequences follow from eqn (2). First, in the dilute limit, the
DLS signal scales as Nb2(k) for N particles in the scattering
volume,13 so at low k as NR6 B fR3, where f is the particle
volume fraction. Secondly, particles with R E 4.493/k0 in a
polydisperse sample contribute little signal at scattering angles
around the minimum. This effect can be used to measure low
polydispersities accurately in a multi-angle experiment,14 but may
generate large errors in commercial single-angle instruments.15

The DDM signal is also dependent on P(kR).16 However, its
first minimum has little effect, because for all Brownian suspen-
sions DDM can operate with kR { 1 where P(kR) - 1. So, Safari
et al.17 were able to use DDM to size a bidisperse suspension with
a 1 : 20 particle size ratio and up to 3% by volume of the large
particles, where in all but one case, DLS fails to size the minority
(large) species. However, these authors explicitly input the bimod-
ality of their suspensions to their DDM analysis.

In this work, we demonstrate the use of DDM to size a
bidisperse suspension with a significantly smaller size ratio of
1 : 4.6 without assuming bimodality in the analysis, and probe
the technique’s efficacy when the number ratio of the species is
systematically changed. Furthermore, we show how to extend
the limits of applicability of DDM further by selecting regions
of interest in our image sequences for analysis. The method
is demonstrated by sizing a trimodal system in which the
signal from the largest particles dominates, without assuming
trimodality a priori.

Below, we first present expressions for fitting DDM results to
data from polydisperse suspensions, explaining how signal con-
tribution scales with particle size. Next, we explain our experi-
mental and data fitting methods. After validating our predicted
signal vs. size scaling, we demonstrate the application of DDM to
bi- and tri-modal dispersions, concluding with a recommended
protocol for sizing multimodal suspensions with DDM.

2 DDM for polydisperse suspensions

The original implementation of DDM9,18 used partially coherent
illumination (see further Appendix A). Since we perform bright-
field imaging with a condenser of numerical aperture E 0.5, our
illumination is incoherent. We have previously shown16 that for
N identical particles in an incoherent image, the differential
image correlation function (DICF), g(k,t), which is the squared
Fourier transform of the difference between an image at time t
and a reference image at time zero, is related to the ISF, f (k,t) by:

g(k,t) = A(k)[1 � f (k,t)] + B(k), (3)

A(k) = 2Na2(k)S(k). (4)

In this expression, which is the same as that derived in the
partially-coherent limit,9,18 B(k) is the system’s noise spectrum.
The DDM signal,† A(k) p a2(k), the contribution from a single
particle, and p S(k), the particles’ structure factor. Note, in
passing, that k here is a Fourier component of density fluctua-
tions and not a scattering vector.‡

In a monodisperse suspension of non-interacting spherical
particles of radius R, the ISF is f (k,t) = exp[�Dk2t], with the
diffusivity D = kBT/6pZR in a suspending medium of viscosity Z
at temperature T (and kB is Boltzmann’s constant). So, fitting the
measured g(k,t) to eqn (3) returns D and therefore R. Appendix C
shows that these results generalise naturally to a suspension of
polydisperse spheres, with A(k) and the ISF now being suitably-
weighted sums over the M particles species i = 1 to M:

AðkÞ ¼
XM
i

AiðkÞ; (5)

f ðk; tÞ ¼
XM
i

CiðkÞfiðk; tÞ with (6)

CiðkÞ ¼
AiðkÞ
AðkÞ ; and (7)

fiðk; tÞ ¼ exp �Dik
2t

� �
with Di ¼

kBT

6pZRi
: (8)

To interpret results obtained by fitting these expressions to
data, we need to understand how the population weights,

Fig. 1 Theoretical squared form factor, P2(kR), for a monodisperse sphere
of radius R as a function of the scattering vector or Fourier component k
non-dimensionalised by the radius, kR, eqn (2), with minima positions
given. The red curve is the Guinier approximation.

† There is no literature consensus on this nomenclature, descriptions of A(k)
include DDM ‘signal’,19 ‘signal amplitude’,17 and ‘signal prefactor’ and ‘signal
term’.20 Crucially, this should not be confused with the camera signal.
‡ To show that the signal measured at scattering vector k in DLS in fact
characterises density fluctuations with that wave vector requires considerable
analysis.13
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{Ci(k)} in eqn (6), scale with particle radius, R. Interpretation of
image intensity fluctuations from a coherent (heterodyne)
scattering perspective implicitly predicts19 a scaling of A(k)
pR6 for Rayleigh scatterers,§ but it is unclear how the use of
incoherent illumination affects this scaling.

To analyse size scaling in the incoherent limit, note that a(k)
in eqn (4) is the two-dimensional (2D) Fourier Transform (FT)
of a(r), the intensity pattern of the image of one particle centred
at the origin of the image plane (with radial coordinate r only in
the case of circular symmetry).16 For a homogeneously fluor-
escent particle that is much smaller than the depth of focus, a(r)
should, to a good first approximation, be given by the 2D projec-
tion of a solid sphere (mathematically, a 3-ball, B3) onto the
equatorial plane, P2ðB3Þ, transmitted through the microscope’s
optics. The Projection-Slice Theorem states that the 2D FT of a
projection of a 3D object is given by a slice (perpendicular to the
projection) through the origin of the FT of the 3D object.21 So, the

FT of P2ðB3Þ is
4

3
pR3PðkRÞ with the P(kR) in eqn (2), only now k is

the magnitude of wave vectors in a 2D rather than 3D Fourier
space. In the dilute limit, where S(k) - 1, eqn (3) becomes

gðk; tÞ ¼ 2Nr2
4

3
pR3PðkRÞ

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AðkÞ

1� f ðk; tÞ½ � þ BðkÞ; (9)

with contrast density r (e.g., dye concentration in fluorescence),
assumed here to be homogeneous and the same for all particles.

In phase contrast imaging, the image is a projection of the
optical path length, so can again be approximated by P2ðB3Þ.
The bright-field image in the geometric limit is a shadowgraph
which can be approximated by I0 � bP2ðB3Þ, where I0 and b are
constants. In either case, eqn (9) is recovered. Quite generally,
whenever the contributions of a particle’s volume elements to
the image intensity contrast are additive, one finds

A(k) B NR6P2(kR) B fR3P2(kR). (10)

Since P(kR) - 1 at the low k accessed in DDM, this predicts an
NR6 or fR3 scaling of signal with particle size.

The above discussion readily generalises to arbitrary-shaped
anisotropic particles when there are enough (independently
oriented) particles to sample the orientational distribution, or
when their rotational diffusion is fast compared to the relevant
timescales in a DDM experiment. In this limit, a slice through the
spherically-symmetric orientationally-averaged 3D form factor is
the single particle contribution to a(k) in eqn (4). The well-known
Guinier approximation to the low k form factor,22 Fig. 1, then gives

aðkÞ � Vp
2e�k

2Rg
2=3; where Rg (¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3R2=5

p
for a sphere) is the

particle’s gyration radius. Now, the DDM signal A(k) scales as
NVp

2B fVp, which is the generalisation of eqn (10).
Eqn (9) does not take into account the finite depth of field in

the z direction. To do so, note first that for bright-field imaging
at low numerical apertures typical in DDM, kz t NA � k, so that

the longitudinal dynamics are much slower than the in-plane
dynamics. We can then take f (k,kz,t) E f (k,0,t).18,23 The effect
of a finite depth of field and limited lateral resolution on A(k)
can then be included by convolving the real-space density with
the optical point-spread function, or multiplying the density by
the optical transfer function, OTF(k,kz), in reciprocal space
to obtain

AðkÞ ¼ 2Nr2
4

3
pR3

� �2ð
OTFðk; kzÞj j2P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kz2

p
R

� 	
dkz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Peff
2ðk;RÞ

:

(11)

The averaging of P2(k,kz) over kz weighted by |OTF(k,kz)|
2 gives a

squared effective form factor, Peff
2(k,R), so that

A(k) B NR6Peff
2(k,R) B fR3Peff

2(k,R), (12)

preserving the R6 scaling. Substitution into eqn (6) gives

f ðk; tÞ �
XM
i

fiRi
3Peff

2ðk;RiÞfiðk; tÞ; (13)

where fi is the volume fraction of species i. If all species are
small enough such that kRi { 1, then P - 1 for all species and
Peff(k,Ri) = Peff(k) becomes the square of the projection of OTF
onto the kz = 0 plane, dropping out of f (k,t) so there will be no
form-factor minima effects. However, for larger particles the
form factor P(kRi) can drop noticeably below unity over the
range of k probed by DDM, with a corresponding k dependence
and overall magnitude drop in Peff(k,R). Furthermore, our treat-
ment neglects refraction at the particle-liquid interface, which
for large particles can significantly modify their contrast in
bright-field imaging. So, R6 scaling likely fails for large particles.

3 Materials and methods
3.1 Experimental

We used polystyrene spheres, which have been routinely char-
acterised using DDM.9,18,24 Dispersions from Thermo Scientific
5000 series with sizes (diameters here and throughout) of
60 nm, 120 nm, 240 nm, 500 nm, 1.1 mm and 2.1 mm were
diluted using Milli-Q water to give stock solutions of various
concentrations, from which we prepared various bimodal or
trimodal mixtures. Note that only the smallest of these particles
are Rayleigh scatterers. Samples were loaded into 0.4 � 4 �
50 mm glass capillaries (Vitrocom Inc.) and sealed with Vase-
line to prevent evaporation. Bright-field videos were captured
using a Nikon Ti-E inverted microscope with a Hamamatsu
Orca Flash 4.0 camera. We imaged far from the sides of the
capillary and 100 mm from the base. For each measurement a
series of five videos were captured immediately after loading to
minimise sedimentation. Each video is 5000–6000 frames of
512 � 512 pixels. Specific choices of frame rate and objective,
detailed below, reflect these considerations:

Pixel size – DDM does not require resolvable particles and
pixel \ particle size typically gives the best results: large
pixels mean lower k, minimising form factor effects.

§ What is clear from the heterodyne DDM literature is that the image intensity
scales as NR3; but additional steps are needed to show that A(k) B NR6.
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Frame rate – Chosen to capture t4 Gb 16-bit TIFF data
including both short- and long-time plateaus of the ISF. In
this work the range is 100–400 fps.
Small changes to the settings did not in general significantly

impact results except in the extreme cases treated in Section 6.
The DICF is extracted from videos using previously-described

LabView software.25 The uncertainty in the DICF is estimated as
the standard error on the mean from the azimuthal averaging of
k. A more theoretical approach requires quantifying the variance
of background image intensity;26 but such rigour is not needed
here and is likely too demanding for general application.

3.2 Data fitting

The extracted DICFs are fitted to eqn (3) with model f (k,t) to
extract the diffusivities, {Di}; here we outline the case of
bidispersity. To decide a suitable range of k for analysing each
system, we carried out DDM experiments with the two indivi-
dual populations of particles used to make a bidisperse sample,
and used independent 1D fits to each k dataset to extract the
k-dependent average diffusivities D1(k) and D2(k). The range of k
values over which these are both flat to within noise is used for
all subsequent data fitting with these particles and microscope
settings.

3.2.1 Least squares. Global least-squares (LS) fits at all k
within the chosen range are performed simultaneously using
the Levenberg-Marquadt algorithm implemented in Scipy.27

Other algorithms often failed to converge or returned biased
diffusion coefficients in multimodal fits. We fitted g(k,t) with
{A(k)} and {B(k)} as free parameters for each k and k-independent
fit parameters in f (k,t) (e.g. diffusivities). Three models of the
ISF were used:

1. f (k,t) = exp(�Dk2t) – for monodisperse diffusing particles.
2. ln(f (k,t)) = �m1k2t + m2(k2t)2/2 � m3(k2t)3/6 + . . . – the

cumulant expansion28–30 typically used to extract the
mean diffusivity (m1) and polydispersity (from m2) in
low-polydispersity monomodal samples.

3. f (k,t) = C1 exp(�D1k2t) + (1 � C1)exp(�D2k2t) – for two
monodisperse populations with diffusivities D1 and D2

contributing fractions C1 and 1 � C1 to the signal
respectively.

Fig. 2a illustrates the information extracted by fitting these
models to a simulated ISF from a bidisperse distribution of
diffusivities. Model (1) finds an essentially meaningless ‘aver-
age’ that misses both populations. Model (2) suffers from the
same problem as far as the mean value is concerned, but gives a
credible description of the notional ‘polydispersity’. Model (3)
returns more or less correct average sizes and contributions for
the two populations, but does not deal with the polydispersity
within each.

3.2.2 CONTIN. The CONTIN algorithm31,32 has long been
used to extract the distribution of diffusivities from measured
ISFs in DLS. It returns the size of the contributions to the
composite ISF, {Ci(k)} in eqn (6), for a finite number of user-
determined bins, giving a normalised distribution of diffusiv-
ities weighted according to eqn (12), the ‘Particle Diffusivity
Distribution (PDD)’, P(D), which is linked to the PSD by the

Stokes–Einstein relation. The presence of noise in the data
renders this inverse problem ill-posed. CONTIN deals with this
by ‘regularisation’,7 i.e., balancing fit quality against parsimony
by favouring a certain degree of ‘smoothness’ in P(D). We
investigated a variety of criteria for optimising this balance (via
tuning a, the ‘regularisation parameter’ in CONTIN), including
the L-curve33 and reduced-w2 statistic. However, Provencher’s
method of selecting a by comparing the impact of regularisation
and the noise in the data, which is implemented as part of
CONTIN,31,32 was consistently found to work best.

Fig. 2b illustrates the result of this procedure in fitting the
ISF from a bimodal distribution of diffusivities, inputting only
the desired binning of the output histogram. CONTIN’s regularisa-
tion selection works exceptionally well because the only noise
applied to the simulated f (k,t) is Gaussian with a known amplitude
(s = 10�5), and is independent for each k-t pair. With real
experimental noise, the selection of a is generally more difficult.

CONTIN is designed for linear problems, but extracting {Ci}
from the DICF by fitting eqn (5)–(8) to eqn (3) is non-linear,
because A(k) and B(k) are unknown. We therefore must estimate
these parameters before using CONTIN. One approach is to
perform a least-squares fit of g(k,t) with an approximate model
(e.g. a cumulant expansion) and use the returned A(k) and B(k)
to extract an ISF to pass on to CONTIN. However, we found that
this encoded the approximate model into the CONTIN results.

Alternatively, since g(k,t - 0) = B(k) and g(k,t - N) = A(k) +
B(k), the long- and short-time ‘plateau values’ of g(k,t) can in
principle give A(k) and B(k).24 Under practical experimental
conditions, however, it is often challenging to access one
or the other of these limits. For us, the long-time plateau
g(k,t - N) is typically accessible whilst the short-time plateau
g(k,t - 0) is difficult to reach even at the highest frame rates,
and errors in estimating B(k) can significantly impact results.26

Instead, we extract B(k) by fitting the first 10–15 time points
of g(k,t) to a second order polynomial of the form

g(k,t) E B(k) + b1(k)t � b2(k)t2 (14)

for each k. This form can be justified by substituting
f ðk; tÞ ¼

Ð
PðDÞ exp �Dk2t


 �
dD, the continuum version of

Fig. 2 Extracted particle diffusivity distributions, P(D), from a simulated
ISF based on a defined bimodal P(D) (red curves, m1 = 1, m2 = 3, s1 = 0.25,
s2 = 0.4, C1 = 0.25). ISF generated with Gaussian noise at each f (k,t);
s = 10�5. (a) Graphical representation of output from three different least
squares fits; monodisperse (blue), bidisperse (orange), and a cumulant
expansion (green). (b) Output from a CONTIN fit.
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eqn (6), into eqn (3) and Taylor expanding around t = 0, using
the fact that P(D) is normalised. For completeness, we find

b1ðkÞ ¼ k2AðkÞ
Ð
PðDÞD dD and b2ðkÞ ¼

1

2
k4AðkÞ

Ð
PðDÞD2 dD.

The fitted value of B(k) can then be subtracted from the average
of the final 10–15 data points to obtain A(k). With this, the ISF
can be extracted from g(k,t) and passed to CONTIN with an
uncertainty estimate based on propagation of errors in g(k,t),
the standard error of the data points averaged for A(k), and the
polynomial fit uncertainties for B(k).

4 Results: scaling of DDM Signal with
particle size

To verify eqn (12), we performed DDM experiments on quasi-
monodisperse suspensions with a range of radii, R. A sample of
each suspension from Section 3.1 was diluted to a mass
fraction c = 10�5. Five bright-field videos of each were captured
at 200 fps using a 20�/0.5 objective without binning, giving
325 nm pixels. Using phase-contrast illumination produced
equivalent results. A least squares 3rd order cumulant fit of
the DICF from each video gives A(k), B(k), and average diffusion
coefficient. Identical microscope settings ensured that changes
in A(k) are solely due to particle size, and there is no measurable
systematic trend in average intensity with R so turbidity is
negligible in all cases. Each A(k) was normalised by that of
the 60 nm particles, for which P(kR) E 1 for all k. This removes
the significant k dependence of the OTF. The range 1.0 mm�1 r
k r 2.5 mm�1 was used for all videos to remove the effect of any
additional k dependence. To isolate the power-law dependence
on particle size, we remove the form factor contribution to A(k)
by dividing by the squared form factor for a sphere, P2(kR)
(eqn (2)).

For all sizes, the measured diffusivity agrees with the
Stokes–Einstein value, Fig. 3a. We can therefore size particles
over two orders of magnitude of R without changing experi-
mental settings, even though A(k) o B(k) for the smaller
particles.

Fig. 3b shows that for R t 0.55 mm, A(k) p R3 at constant c
(and therefore f), verifying eqn (12). Since N p c/R3 and we
have previously confirmed experimentally34 that A(k) p N, this
is equivalent to a signal of R6 per particle, matching DLS scaling
(assuming Rayleigh scatterers) and our theoretical prediction.
This R6 scaling sets the weight of signal contributions in the
case of mixtures with multiple particle sizes. Note however,
that the (temporal) intensity fluctuations which form the
basis for DLS measurements also scale as R6, whereas the
(spatio-temporal) fluctuations that form the basis of the DDM
measurements only scale as R3. So, it is experimentally much
less challenging to capture intensity fluctuations faithfully
for DDM.

For the largest particles, A(k) increases with R slower than R3,
even after correcting for form factor effect, Fig. 3b. As already
suggested at the end of Section 2, this is not unexpected as
several assumptions of our simple model start to fail.

5 Results: bidisperse systems

The simplest multimodal suspension is bimodal, with milk35

being an everyday example. We mixed 10�4 mass fraction
dispersions of 240 nm and 1.1 mm particles (size ratio
E1 : 4.6) to produce bidisperse mixtures in which the small
particles should contribute between 1% and 99% of the signal
to the ISF according to eqn (12); Table 1. Videos of each sample
and of the parent populations were captured at 100 fps, with a
10�/0.3 objective and 1.5� extra magnification (pixel size
433 nm). Examples of the extracted DICFs and fits are shown
in Appendix B.

5.1 Least squares fits

Fitting model 3 in Section 3.2.1 to our data, which assumes
bidispersity, we extract the mean diffusion coefficient and the
relative contribution of each population to the ISF, Fig. 4.
Comparison with values obtained from fitting a monodisperse
model to the unmixed samples, Fig. 4a, shows that the method
works well provided that the ‘low-signal component’¶ contri-
butes at least E2%. We found little quantitative difference in
taking C1 in model 3 to be constant or allowing it to vary with k,
confirming minimal form factor effects. Practically, allowing C1

to vary increased processing time and occasionally caused
issues with convergence.

The spread of the five measurements of each sample shows
that fit uncertainties shown by the error bars are underesti-
mated, although this is not indicated by fit statistics (reduced-
w2 E 1). The uncertainties are comparable across different
fitting algorithms, including Minuit’s MINOS error estimation,36

which accounts for correlations between fit parameters. The

underestimate could be due to correlations in gð~k; tÞ that are
not accounted for when calculating DICF uncertainty or in the

Fig. 3 DDM results for polystyrene spheres of different sizes. (a) Extracted
diffusion coefficients as a function of manufacturer provided radius.
Dashed line shows Stokes–Einstein prediction (b) Average normalised
(see main text) A(k) against particle radius. Green triangles indicate average
A(k) as extracted from videos. Black crosses are the same data corrected
for form factor effects. The dashed line has slope 3. In both plots there are
5 points for each size, which often overlap.

¶ I.e., the component of the bidisperse suspension that contributes o50% of the
g(k,t) signal; because of the NR6 scaling, this is not the ‘minority component’ by
number.
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fitting algorithms. We did not investigate these uncertainties
because the final error bar in the fitted diffusivities (and therefore
size) is clearly defined by variability between measurements.

Note that using DLS to obtain the correct diffusivities for the
two populations would only be possible if the scattering angle,
y, is optimised to avoid the form factor minima of each. To
highlight this, we plot the theoretical fractional contribution of
large particles to the DLS signal at different y for DLS using a
532 nm laser and polystyrene spheres (refractive index = 1.59),
Fig. 4b, with y = 12.81 and 1731 being typical of some popular

commercial devices. Note that these curves assume that each
population is monodisperse; any polydispersity would cause
significant shifts.

By contrast, there is a unique theoretical prediction for
DDM, which is calculated only using eqn (12) from the mean
sizes of the two populations, with the latter being extracted
from the same experiment, Fig. 4. Since we remain at low k far
from the form factor minimum, polydispersity of the individual
populations can be neglected in calculating this curve. Thus,
our protocol can give direct information on the composition of
the sample.

If the size ratio of our bidisperse suspension is reduced from
1 : 4.6 to 1 : 2, fitting DDM data to model 3 yields a significantly
biased diffusivity for the smaller particles even when they
contribute as much as 40% of the signal (Appendix F.1). At
this size ratio, the corresponding timescales for decorrelation
are too close for them to be separated cleanly. There is some
indication of local minima in the w2 minimisation, suggesting
that alternative approaches may improve results. However, we
also observed this bias in analysis of simulated bimodal ISFs
when the peaks in P(D) begin to overlap, so this may represent a
more general limitation that is not unique to DDM. DDM
therefore cannot be solely relied upon to size bidisperse sam-
ples with such low size ratios.

5.2 CONTIN analysis

Least-squares fitting delivered the correct mean diffusivities of
the two populations and their number ratio by assuming
bidispersity. Alternatively, the cumulant model (model 2 in
Section 3.2.1) can be fitted to the data without this assumption
to obtain a single mean and polydispersity (see Appendix D),
with no indication of bidispersity or poor fit quality. To do
better, we turn to CONTIN.

CONTIN delivers P(D), the particle diffusivity distribution
(PDD) histogram on a predefined grid of 60 linearly spaced bins
in the interval 0.01 mm2 s�1 r D r 5 mm2 s�1. Fig. 14 (Appendix
F.3) shows the result for each sample in Table 1. Fig. 5 shows
the PDDs from the third video of each mixture in which the
large particles contribute 0.1%, 1%, 10%, and 25% of the
particle mass (or 5%, 37%, 87%, and 95% of the signal).

This analysis convincingly returns a bimodal distribution of
diffusivities provided that the contribution of low-signal com-
ponent to the DICF remains \5%, comparable but slightly
more stringent than for least-squares fitting. This is because
too small a contribution to f (k,t) from either species will be
removed as ‘noise’ by the CONTIN regularisation algorithm,
whilst least squares will always return two sizes – fitting noise if
necessary.

Fitting the weighted sum of two Gaussian distributions to
the returned PDDs for each video with Z5% minority signal
yields the mean diffusivity and relative signal contribution of
each population, Fig. 4. The variation in these properties is
comparable to the equivalent least-squares values, and the
more stringent signal contribution requirements are visible as
the signal reaches E5%. These fits also return a polydispersity;
but there are significant run-to-run variations in the fitted PDD

Table 1 240 nm and 1.1 mm particle mixtures used in Section 5

Large-particle mass fraction Expected small-particle ISF contribution

70% 1%
50% 2%
25% 5%
10% 13%
5% 25%
2.5% 40%
1% 63%
0.5% 77%
0.1% 95%
0.02% 99%

Fig. 4 Results of DDM analysis of 240 nm/1.1 mm sphere mixtures with
different compositions, showing five measurements at each composition.
Red crosses indicate results of least-squares fits to an explicit bimodal
PDD, blue triangles are extracted from CONTIN fits. CONTIN results are
shifted slightly along the x-axis for clarity, and are only plotted where each
population is expected to contribute \5% of the DICF. (a) Diffusion
coefficients (points) compared to average values for the monomodal
suspensions (dotted lines). (b) Signal fraction from large particles (points),
and theoretical expectations for DDM, eqn (12) (solid line) and DLS at
various angles (dashed lines).
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at each composition, Fig. 14, because the regularisation para-
meter a is highly noise sensitive. However, CONTIN fits the data
to an integral of the PDD, so that there is a priori reason to
surmise that the area of each peak may be far less noise
sensitive than either the peak width or height. The peak area
is a measure of the (weighted) number of particles, eqn (12).
Fig. 4b validates this surmise. So, a CONTIN analysis is able to
deliver the sizes and relative number of the two populations in
our 1 : 4.6 bidisperse suspension.

We also tested CONTIN analysis for a bidisperse suspension
in which the two populations differ in size by only a factor of 2.
The method again returns a bimodal diffusivity distribution
with essentially the same means as least-squares fits (including
the aforementioned bias) whenever the low-signal component
contributes \5% of the DICF, Fig. 12 (Appendix F.1).

6 Spatial aspects of DDM

The NR6 scaling in DLS and DDM means that even a low
concentration of large particles will dominate the signal and
render it difficult, if not impossible, to detect smaller species.
Thus, for example, in our 1 : 4.6 bidisperse suspension, we need
at least 75% mass fraction of the smaller species to contribute
at least 5% of the DICF, Table 1, for this population to show up
in the PDD from a CONTIN analysis. Such considerations are
important, e.g., when sizing biomedical nanoparticles, where
buffers at physiological ionicity often lead to aggregation. The
presence of micron-sized aggregates leads to highly distorted
PSDs37 or even irreproducible results when DLS was used to
size nanoparticles.6 We next show how to use DDM to size one
or more populations of small particles in the presence of a
numerically-minor population of large particles that dominate
the signal.

The key is to make use of the spatial information encoded in
the images collected in a DDM experiment. The numerical
minority of the largest particles means that they are relatively
sparse in the images. So, it should be possible to analyse
selectively only those portions of the collected images from
which these particles are essentially absent, Fig. 6. This can be

accomplished either by combining dilution and control of magni-
fication or by using a spatially-resolved analysis. We demonstrate
these two approaches using a trimodal stock, Table 2.

First, we measured a sequence of samples obtained by succes-
sively diluting the stock by a factor of 3. The idea is to identify, if
possible, a window of concentration in which the field of view
typically does not include any of the largest particles, but the
signal level from the smaller populations is still measurable.

Videos of each dilution were captured at 400 fps using both
10�/0.3 and 60�/0.7 objectives without pixel binning, for pixel
sizes of 650 nm and 108 nm respectively. For 512 � 512 pixel
images (the maximum square images possible at this frame rate
with our camera) this corresponds to 2D imaging areas of
1 � 105 mm2 and 3 � 103 mm2 respectively. The exact volume
imaged is difficult to estimate since the depth of field is strongly k
dependent;10,18 an estimate based on geometric optics38 would
be 9 mm and 1 mm for the 10� and 60� objective respectively.

By design, the number of modes found by the analysis
should vary as dilution progresses, with the largest population
disappearing to reveal smaller particles. With no a priori fixed
number of modes to input to least-squares fitting, we used
CONTIN, with the input being a grid of 60 logarithmically
spaced bins for 1 � 10�2 mm2 s�1 r D r 1 � 102 mm2 s�1.
To avoid logarithmically scaled bin heights, the quadrature
weight of each bin is set to 1, so that the sum of bin heights
describes the contribution from each population rather than
the bin area.31,32 Fig. 7 shows the fitted P(D) from each repeat
using the two different objectives with the stock suspension
and three successive dilutions.

With the larger field of view (10� magnification) the large
particles dominate the signal at all dilutions. At the higher
(60�) magnification, there is still no convincing evidence of the
two smaller populations until we reach 32-fold dilution, and
their signals remaining robust at 33-fold dilution. Again, there
is significant variability in peak shape from run to run, but the
overall picture is clear. Further dilution reduces the signal to
the extent that peaks appear and disappear in the 5 repeats.

Fig. 5 CONTIN results for various 240 nm/1.1 mm sphere mixtures (see
legend) with expected signal contributions from large particles of 5%, 37%,
87%, and 95% respectively. Purple vertical lines show average diffusivities
from least-squares fits to the monodisperse suspensions.

Fig. 6 Schematic of a trimodal suspension showing how by selecting a
suitable region of interest, we can enhance the DDM signal from smaller
particles by removing the contribution from large particles.

Table 2 Trimodal system composition for Section 6

Particle diameter 60 nm 240 nm 1.1 mm

Weight fraction 10�4 10�6 10�6

Signal contribution, Ci 2% 1% 97%
Number density (per mm3) 8 � 108 1 � 105 2 � 103
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A disadvantage of the dilution method is that the optimal
concentration window is rather narrow, and so can be easily
missed in a real-life application. More robustly, one may
eliminate the contribution from the largest particles by select-
ing an appropriate region of interest (ROI) for analysis from the
original video. Fig. 8 compares the PDDs obtained from one of
the 60� magnification videos of the stock suspension when we
analysed the full video (512 � 512 pixels), and when we
analysed a smaller ROI (128 � 128 pixels) chosen to exclude

all large particles. Not surprisingly, the former PDD shows only
the largest particles, while the latter shows the two smaller
populations.

Obviously, success depends on selecting and optimising an
ROI. Fig. 13 in Appendix F.2 reports the PDD obtained as the
size of the ROI is progressively reduced for 60� magnification
videos of the stock solution, again showing five runs at each
stage. That the two smaller populations show up strongly after
reducing the ROI by a factor of 42 is consistent with diluting the
stock by 32–33 times to give optimal performance, Fig. 7. The
full data set, Fig. 13, illustrates the superiority of this method
compared to dilution. Here, the user varies the ROI size and
position in real time while analysing a single data set until
correct sizing is achieved; dilution requires multiple experi-
ments in which the user must ‘hit’ the right dilution window
and sample position by chance.

As we already noted, the peak areas in the CONTIN output
contain compositional information via the relative values of A(k).
Following the procedure described in Appendix E, we extracted
relative volume fractions, finding 98.1 � 0.1%, 1.0 � 0.1%, and
0.9� 0.1% for the 60 nm, 240 nm, 1.1 mm populations, in excellent
agreement with the known 10�4 : 10�6 : 10�6, Table 2.

Conceptually, our technique is similar to centrifuging out
large particles prior to DLS. However, our methods need lower
quantities of suspension and do not require physical proces-
sing, which could be relevant for sparse or delicate samples.
Note also that our ROI selection may be compared with the use
of spatially-resolved DDM to verify a theorem in active matter
physics.39

7 Summary and conclusions

Our results show that DDM is a facile and robust method for
sizing suspensions with multimodal PSDs, but must be coupled
with a suitable method for deducing diffusivity distributions
from measured ISFs. Specifically, we have demonstrated the
use of CONTIN, which is already familiar from long use in
DLS. In future work, more advanced algorithms designed for
DLS analysis should be explored for potential improvements in
resolution and performance.40–43 In addition, for accurate uncer-
tainty estimates in fitted parameters, correlations between g(k,t)
points could be included and a Bayesian fitting algorithm may be
advantageous as an alternative to least-squares fits.

We have used bright-field microscopy, but phase-contrast or
fluorescence should also be suitable. The method is extendable
to turbid systems if suitable k ranges and g(k,t) models are
used.10 However, deviation from standard DDM is strongest at
low k, which may obviate some of the benefits discussed in
Section 1.

In Section 5 we have shown how our analysis breaks down
when signal contribution t2% or for size ratio E1 : 2. How-
ever, breaking these conditions does not necessarily lead to
failure; neither is satisfying them a guarantee of success. For
example, both conditions are dependent on polydispersity and
overlap of populations in the PSD; separately, the limit of

Fig. 7 CONTIN fits to videos of the trimodal system defined in Table 2 and
dilutions. Each pair of graphs shows the result with 10�magnification (top)
and 60� magnification (bottom) for the labelled dilution. Vertical dotted
lines show expected peak positions.

Fig. 8 CONTIN fits to data extracted from 60x magnification videos of
the (undiluted) mixture in Table 2, and from a 128 � 128 pixel selected ROI.
Dashed vertical lines show the diffusivities of the monomodal suspensions.
Inset shows example frame and the selected ROI.
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applicability may be improved by reducing the uncertainties in
the DICF with larger videos, or increasing the signal to noise
ratio A(q)/B(q) – so could be affected by absolute size. Perhaps
more important than enunciating hard-and-fast ‘limits of
applicability’ is to note how failure occurs. In the case of a
small signal from one population, the spread of the 5 repeats
typically becomes very large around the mean (accurate but
imprecise), which is easy to identify; however, in the case of
comparable sizes, the reported values could be consistent but
biased (inaccurate but high precision), which might be mis-
taken for a good measurement.

Before concluding, we summarise a protocol for sizing
multimodal suspensions using DDM. One starts by visually
inspecting images of the sample, increasing the magnification
from a low value until the first particles become visible. At this
point, when the largest particles should be comparable to pixel
size, record a set of videos and back out the ISF. A CONTIN
analysis may already reveal multimodality, or only show a
single large population. Regardless, one would then dilute the
suspension (and/or increase the magnification) until the signal
from the largest particles disappears to reveal smaller popula-
tions. If no signal remains, indicated by a time-independent
DICF, one may be reasonably confident any small particles are
at a number density comparable to or lower than that of the
large particles.

We conclude that DDM can fill an important gap between
low-throughput electron microscopy and high-throughput DLS.
While DLS can access shorter timescales and is likely more
sensitive,19 form factor effects make multimodal systems chal-
lenging. In contrast, access to real space images and low-k
information makes DDM uniquely suited for sizing multimodal
suspensions, which are ubiquitous in applications.
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Appendices

A DDM – scattering perspective

The first demonstration of DDM particle sizing9 used bright-
field imaging with a condenser lens of numerical aperture
NA = 0.9 and an objective of NA = 0.5. In a follow-up

publication,18 it was stated that NA of the condenser was
‘about ten times smaller than the numerical aperture of the
objective’. We take this to mean that an iris restricts the
actual condenser NA to be around 0.05, giving partially
coherent incident light. Consistent with this, the authors
analyse their experiment in terms of the interference of the
electric fields of light that has and has not been scattered by
particles in the sample, treating their technique as a devel-
opment of dynamic heterodyne near field scattering
(HNFS).44,45 Again, consistent with this understanding, a
subsequent review23 shows (their Fig. 3b) that their raw
images consist of speckle (= random interference) patterns.

Other researchers have been able obtain results without
stopping down the condenser. Thus, our bright-field imaging
uses a condenser iris with NA an order of magnitude larger than
in the original implementation; others have implemented DDM
using fluorescence or absorbance to generate contrast. In all of
these cases, there is no coherence in the incident light, but
DDM still extracts the ISF. This is because, generally, linear
space-invariant images can be treated as density maps, so that
correlating images directly gives density autocorrelations.
Whilst there are subtle differences, the overall outcome remains
the same, with the notable exception that scattering requires a
small correction to k for phase shifts due to motion perpendi-
cular to the image plane.18

In Section 2 we show theoretically that A(k) B NR6. Our
derivation implicitly assumes that the light is incoherent, as we
only consider intensities: the overall intensity contrast of a
single particle is calculated by integrating over the particle’s
volume, where each volume element contributes with the same
intensity contrast density r. The correctness of this result for
small to moderately large particles is then demonstrated
experimentally in Section 4 for brightfield DDM with incoher-
ent illumination.

In the heterodyne scattering mode of DDM, the fluctuations
in the camera signal will be proportional to the scattering
field.19,23 The scattering of light by particles is well understood
in terms of size and shape;13,46 in particular, the scattered field
will scale with Vp B R3 for sufficiently small (Rayleigh) scat-
terers, therefore from a heterodyne perspective we can obtain
the same A(k) B NR6 scaling when calculating the correlation
function. Note that for larger particles, such as those typically
sized using DDM (including this work), the size scaling of the
scattered field is no longer trivial, as the Mie scattering pattern
shows strong directional dependence.

B Example DICFs

Fig. 9 shows the extracted DDM signals (in the form of the
DICF, g(k,t)) for two monomodal suspensions and a mixture of
the pair. By eye, it is not obvious that the DICF for the bimodal
suspension is not monomodal, however by fitting appropriate
models it is possible to extract both sizes and their relative
contribution to the signal (see Section 5).
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C DDM with multiple populations

The derivation of Wilson et al.47 assumes that intensity fluctua-
tions are proportional to density fluctuations. However, signal
from a given population depends on particle size as well as
concentration (see Sections 2 and 4). Therefore, this assumption
does not hold outside of monodisperse suspensions. Instead,
consider M independent populations of particles, where overall

fluctuations in intensity are given by additive components
proportional to fluctuations in density of each population;

DIð~r; tÞ ¼
XM
i

kiDrið~r; tÞ (15)

where Dri ¼ rið~r; tÞ � rih i are the fluctuations in the density ri of
population i. The constants ki will depend on imaging setup and
particle properties which determine contrast – such as refractive
index, size, and physical image formation mechanisms. The Four-
ier transformed difference images are then given by

Dð~k; tÞ ¼
XM
i

ki Drið~k; tÞ � Drið~k; 0Þ
h i

: (16)

We can then invoke the key assumption that the populations are
independent, so density fluctuations of each are uncorrelated. In
this case, when taking the time averaged square modulus of
eqn (16) to obtain the DICF, all components of the inter-
population cross-terms will be zero. The remaining terms can be
written

gðk; tÞ ¼
XM
i

2ki2 o riðkÞj j2 4 1�
Driðk; tÞDr�i ðk; 0Þ
� 

t

riðkÞj j2
D E

2
4

3
5;
(17)

where h|ri(k)|2i describes the sample structure. The final term in
the summand of eqn (17) can be recognised as the ISF for the ith
population fi(k,t), so by defining Ai(k) = 2ki

2h|ri(k)|2i we can write
the entire multi-population DICF as

gðk; tÞ ¼
XM
i

AiðkÞ 1� fiðk; tÞ½ � (18)

An additive noise term B(k) can also be included for instrument
noise. eqn (18) shows that the contributions to the DICF are

addditive, by defining AðkÞ ¼
PM
i

AiðkÞ and Ci(k) = Ai(k)/A(k), soP
i

CiðkÞ ¼ 1, we can write this in the more familiar form

g(k,t) = A(k)[1 � f (k,t)] + B(k), (19)

where f ðk; tÞ ¼
XM
i

CiðkÞfiðk; tÞ: (20)

Eqn (19) is the usual expression for g(k,t) which is key to DDM
analysis, with an ISF which is the weighted sum of the ISFs of
the individual populations.

The full theoretical calculation of population signal strength
Ai(k) p ki

2h|ri(k)|2i is challenging, although fortunately not a
requirement to use DDM.

D Cumulant fit to bidisperse
measurements

Fig. 4 shows least-squares results from fitting an explicit
bidisperse model (model 3 in Section 3.2.1) to bimodal suspen-
sions with compositions in Table 1, obtaining good results for

Fig. 9 Representative differential image correlation functions, g(k,t), at
selected k values for the monomodal and bimodal suspensions discussed
in Section 5, along with the corresponding least-squares (LS) and CONTIN
fits. The top and bottom frames show the signal from suspensions of
240 nm and 1.1 mm respectively, and the middle frame corresponds to a
mixture which is 1% large particles by mass (contributing E37% of the
signal).
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each particle size. If we did not know a priori of bimodality, we
may instead fit model 2 in Section 3.2.1, Fig. 10. Such a cumulant
fit to the same data extracts moments comparable with the
eqn (12) weighted mean and variance of the diffusion coefficient
distribution; in other words, the fit returns reasonable first and
second moments of the PDD. The reported variance is slightly
less accurate than the mean, which is expected as the accuracy of
terms in cumulant fits is known to decrease with increasing
order,29 and the cumulant is designed for reasonably narrow
distributions where a continuous curvature is observed at the
mean, which is not generally true for a bimodal system. Never-
theless, the results are reasonable, although do not obviously
indicate the model’s inappropriateness for a bidisperse system.

E Extracting composition of the
trimodal suspension

In Section 6 we showed that by selecting subregions of an
image to analyse it is possible to identify three distinct popula-
tions in the PDD of a trimodal suspension. However, these
analyses are performed independently, so the relative contribu-
tions of each population to the signal is not extracted directly in

a single histogram. Here we outline a procedure by which the
relative volume fractions of the populations can be extracted
from the CONTIN analyses.

The full video contains signal from all particles, and the
selected 128 � 128 ROI only contains signal from the two
smaller populations. Therefore, the fraction of the signal from
the two smaller populations is AROI(k)/Afull(k), and the fraction
from large particles alone can be obtained as

Clarge ¼ 1� AROIðkÞ
AfullðkÞ

� �
k

(21)

where Afull(k) and AROI(k) are the (size normalised) DDM signal
strength A(k) for the full video and smaller subregion respec-
tively. We average this ratio over the range of k which overlap in
the two analyses.

The relative contributions of the small and medium parti-
cles to the signal in the reduced video can be extracted from the
CONTIN result by summing the bins contributing to each peak
(as noted in the main text, due to quadrature weight settings it
is the sum of bin heights which determines contribution in this
case, not the area). This fraction is labelled cj. The fractional
contribution of the small/intermediate population j to the total
signal is therefore

Cj ¼ cj
AROI

AfullðkÞ

� �
k

: (22)

Eqn (12) allows signal strength to be related to volume frac-
tions. In these videos we consider a smaller region at high
magnification and therefore inevitably work at a relatively high
k; for the large particles in particular the impact of the form
factor is not negligible even though we remain far from the
minimum so that no populations are lost. Volume fractions of
the three populations are given by

fi ¼ g
Ci

Ri
3 PðkRiÞh ik2

; (23)

where again we average the form factor P(kR) over the range of k
used and g is a constant of proportionality. When considering

relative volume fractions fi

�P
k

fk, the value of g is irrelevant.

This can be done for each of the 5 pairs of videos (full video
and subregion) to obtain a measure of uncertainty; for each fi

five values will be obtained. The mean can then be quoted

along with the standard error s=
ffiffiffi
5
p
 �

for final values and
uncertainties which we find are in very good agreement with
the true composition of the trimodal mixture used for these
experiments.

F Additional data and plots
F.1 Least-squares and CONTIN fits to 240 nm/500 nm videos

Bidisperse mixtures of 240 nm and 500 nm particles were
prepared by mixing mass fraction 10�4 suspensions of mono-
disperse particles, with ratios of 4 : 1, 1 : 1, and 1 : 4. Large
particles are expected to contribute 71%, 91%, and 97% of
the signal respectively, based on eqn (12). These were recorded

Fig. 10 Fitted PDD moments for the bimodal mixtures described in
Table 1 (Section 5), obtained using 3rd order cumulant fits to the ISF. Each
data point is the result from fits to a single video, with corresponding
uncertainties as error bars. Top – mean diffusion coefficients, the dotted
horizontal lines show the average fitted diffusion coefficient for the
monomodal suspensions, the dashed green line shows the mean diffusion
coefficient, weighted by the expected signal contributions. Bottom –
corresponding variance from the same fits. Dashed green line shows the
weighted variance predicted (assuming monodispersity of each
population).
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at 200 fps with 20� magnification and no binning (pixel size
325 nm). They were then fitted to the DICF with a bidisperse
model (see Section 5 of the main text) to obtain a mean
diffusivity for each population and the relative contribution
to the signal, Fig. 11. We see that in the five repeats the bimodal
suspension shows significant variability, switching between

accurate results and underestimated values for both populations.
This grouping could be an indication of local minima in w2.

CONTIN fits were performed to the same videos, Fig. 12.
Again we see two populations when the contribution of the
minority signal component \5%, with diffusion coefficients
comparable to the values obtained by LS fits (Fig. 11).

F.2 All CONTIN results from ROI selection (Section 6)

Fig. 13 shows all results for the ROI selection to exclude large
particles from a trimodal suspension. An example for a single
video with full and 128 � 128 ROI was shown in Fig. 8 of
Section 6. In Fig. 13 we plot all 5 repeats for each video and
selected subregions of various sizes. As the ROI is reduced, the
largest particles are removed with increasing levels of success,
until at 128 � 128 pixels the two smaller populations are clearly
visible in all repeats with no contribution from the large
particles. As with the bimodal CONTIN experiments, we see
significant variation in shape between repeats, although the
overall trend is clear.

F.3 Complete CONTIN results for 240 nm/1.1 lm videos

Fig. 14 shows the results for CONTIN fits to every one of the
videos recorded to produce Fig. 4 and 5 in Section 5. The
CONTIN particle diffusivity distributions (PDDs) agree reason-
ably well with the least-squares fits as discussed in the main
text, and as long as the signal from a population exceeds 5% the
peak is consistently present in the PDD, and as the signal drops
towards this limit the position and presence of the peak
becomes much less reliable. In addition, we can see variation
in the width of the peaks between repeats, which we attribute to
variability in the selection of the regularisation parameter a.
This could potentially be eliminated in certain situations (e.g.
repeatedly sizing a suspension for consistency as part of quality
control) by selecting a fixed a for the analysis.

Fig. 11 Parameters obtained from bidisperse least squares fits of the
DICFs from 4 : 1, 1 : 1, and 1 : 4 mixtures (by mass) of 240 nm and
500 nm particles. Each data point is the result from fits to a single video,
with corresponding uncertainties as error bars. (a) Fitted diffusion coeffi-
cients, the dotted horizontal lines show the average fitted diffusion
coefficient for the monomodal suspensions. (b) Fitted signal fraction from
the large particles, with a prediction based on the NR6 scaling of eqn (12).

Fig. 12 CONTIN results for mixtures of 240 nm and 500 nm spheres
mixed in different proportions. Each plot is labelled and had identical
analyses performed, the vertical dotted lines show the average diffusion
coefficient fit to videos of the separate populations.

Fig. 13 CONTIN fits applied to sub-regions of the 60 � magnification
videos of the original stock mixture from Table 2. Each plot is labelled with
the size of the ROI, which is illustrated for the first video in each set by the
blue box in the inset. Vertical dotted lines show expected peak positions,
labelled with particle diameter.
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