Surface stress and shape relaxation of gelling droplets†
Abstract
Solidification is a heterogeneous transformation from liquid to solid, which usually combines transport, phase transition and mechanical strain. Predicting the shapes resulting from such a complex process is fascinating and has a wide range of implications from morphogenesis in biological tissues to industrial processes. For soft solids initially at equilibrium, elastic stresses, whether tensile or compressive, can be induced by heterogeneous volumetric deformations of the material. These stresses trigger surface instabilities leading to variations of curvature and shape of the solids. In this article, we study the shape evolution of elongated droplets of polymer and particle suspensions undergoing a solidification process caused by the inward diffusion of a gelling agent from the surface. We show experimentally and numerically that there appears a layer of gelled material growing at the surface. Due to volume contraction, this layer induces tensile stresses and drives a flow in the ungelled liquid core, resulting in the relaxation of the droplets toward spherical shapes. Over time, the thickness of this elastic membrane grows, hence the bending stiffness required to change its shape eventually balances the surface stresses, which arrests the relaxation process. These results provide general rules to understand the shape of solidifying materials combining both tension and bending driven deformations.