Issue 40, 2023

Surface stress and shape relaxation of gelling droplets

Abstract

Solidification is a heterogeneous transformation from liquid to solid, which usually combines transport, phase transition and mechanical strain. Predicting the shapes resulting from such a complex process is fascinating and has a wide range of implications from morphogenesis in biological tissues to industrial processes. For soft solids initially at equilibrium, elastic stresses, whether tensile or compressive, can be induced by heterogeneous volumetric deformations of the material. These stresses trigger surface instabilities leading to variations of curvature and shape of the solids. In this article, we study the shape evolution of elongated droplets of polymer and particle suspensions undergoing a solidification process caused by the inward diffusion of a gelling agent from the surface. We show experimentally and numerically that there appears a layer of gelled material growing at the surface. Due to volume contraction, this layer induces tensile stresses and drives a flow in the ungelled liquid core, resulting in the relaxation of the droplets toward spherical shapes. Over time, the thickness of this elastic membrane grows, hence the bending stiffness required to change its shape eventually balances the surface stresses, which arrests the relaxation process. These results provide general rules to understand the shape of solidifying materials combining both tension and bending driven deformations.

Graphical abstract: Surface stress and shape relaxation of gelling droplets

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2023
Accepted
10 Sep 2023
First published
20 Sep 2023

Soft Matter, 2023,19, 7787-7795

Surface stress and shape relaxation of gelling droplets

J. Godefroid, D. Bouttes, A. Marcellan, E. Barthel and C. Monteux, Soft Matter, 2023, 19, 7787 DOI: 10.1039/D3SM00533J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements