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Strain stiffening elastomers with swelling
inclusions†

Stefanie Heyden,* Robert W. Style and Eric R. Dufresne

Inhomogeneously swollen elastomers are an emergent class of materials, comprising elastic matrices

with inclusion phases in the form of microgel particles or osmolytes. Inclusion phases can undergo

osmotically driven swelling and deswelling over orders of magnitude. In the swollen state, the inclusions

typically have negligible Young’s modulus, and the matrix is strongly deformed. In that regime, the

effective mechanical properties of the composite are governed by the matrix. Laying the groundwork for

a generic analysis of inhomogeneously swollen elastomers, we develop a model based on incremental

mean-field homogenization of a hyperelastic matrix. The framework allows for the computation of the

macroscopic effective stiffness for arbitrary hyperelastic matrix materials. For an in-depth quantification

of the local effective stiffness, we extend the concept of elastic stiffness maps to incompressible

materials. For strain-stiffening materials, stiffness maps in the swollen state highlight pronounced radial

stiffening with a non-monotonic change in stiffness in the hoop direction. Stiffening characteristics are

sensitive to the form of constitutive models, which may be exploited in the design of hydrated actuators,

soft composites and metamaterials. For validation, we apply this framework to a Yeoh material, and

compare to recently published data. Model predictions agree well with experimental data on elastomers

with highly swollen embedded microgel particles. We identify three distinct regimes related to an

increasing degree of particle swelling: first, an initial decrease in composite stiffness is attributed to

particle softening upon liquid intake. Second, dilute particle swelling leads to matrix stiffening

dominating over particle softening, resulting in an increase in composite stiffness. Third, for swelling

degrees beyond the dilute limit, particle interactions dominate further matrix stiffening.

I. Introduction

Plants lacking water are wilted and limp. This familiar sight
highlights an interesting interplay of physical phenomena,
where osmotically driven fluid flow and turgor pressure within
cell walls compete to determine the mechanical strength and
shape.1–3 Recently, several approaches to synthetic materials
mimicking this concept have emerged. They comprise either
encapsulated osmolytes4 or highly swelling hydrogel particles
embedded in soft5 or tough6 matrices. Establishing continuity
with recent experimental work,4 we refer to these hydrated
elastomers as the class of hydroelastomers. Inhomogeneously
swollen elastomers gained interest as a means of enhancing
composite properties,7,8 providing mechanically responsive
actuators,4,9 and enabling shape morphing.5 Applications typi-
cally share three common features: spheroidal inclusion shape,
attendant large deformations, and negligible Young’s moduli of

the inclusion phase. Effective composite properties in the
deformed state could hence be dominated by nonlinear proper-
ties of the matrix material. In this setting, the pressure within
droplets in equilibrium is assumed to have a negligible influ-
ence on composite stiffness.

A large body of literature has evolved in the realm of
computing effective properties of composites with spherical
inclusions, starting from Eshelby’s pioneering single inclusion
solution,10 which was later extended to account for multiple
inclusions interacting in an average fashion (cf., e.g.,11–13). The
introduction of a linear comparison composite further allowed
to take into account nonlinearities in material behavior.14–16 In
this approach, the nonlinear elastic behavior of constituents
is linearized at given strain levels. Afterwards, higher level
homogenization schemes are applied to derive the effective
response of the composite. As the simplest and computation-
ally most efficient method, Mean-Field Homogenization com-
putes homogenized stress- and strain fields as volume averages
over composite constituents. More complex homogenization
methods involve numerical and semi-analytical schemes, as
well as extensions to elasto-visco-plastic materials (see ref. 17–21
and references therein).
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Here, we develop a model based on incremental mean-field
homogenization, laying the groundwork in characterizing gen-
eric inhomogeneously swollen elastomers. The model is applic-
able for any hyperelastic matrix. We derive the macroscopic
mechanical properties of the dominant matrix phase in the
dilute swelling regime. Scaled by the matrix volume fraction,
this corresponds to the upper bound on composite properties
with inclusions of negligible Young’s modulus. Exploiting the
fully analytical solutions, we furthermore provide an in-depth
quantification of the local stiffness at the material point level
prior to homogenization. To this end, we extend the concept of
elastic stiffness maps to incompressible materials. To illustrate
the characterization of swelling regimes, the model is tailored
to a Yeoh material up to second order. By comparison to
experimental data, the model characterizes three distinct stiff-
ness regimes of highly swollen elastomers.

II. Theory
A. Deformation and force balance

We consider a spherical particle of initial radius R0 embedded
in an elastic incompressible matrix of radius R1 (see Fig. 1).
Upon swelling, the particle undergoes a spherically symmetric
growth to its deformed radius r0.

Kinematics governing the deformation follow from the
incompressibility constraint

4

3
pðR3 � R0

3Þ ¼ 4

3
pðr3 � r0

3Þ; (1)

from which radial stretches can be computed as

lR ¼
@r

@R
¼ R2

ðr03 � R0
3 þ R3Þ2=3: (2)

Under the assumptions of spherical symmetry and incompres-
sibility, the deformation gradient simplifies to F = ((lR, 0, 0),
(0, lR

�1/2, 0),(0, 0, lR
�1/2)).

For a generic hyperelastic material, we have

I ¼
ð
V

WðCÞdV �
ð
V

pðRÞðJ � 1ÞdV; (3)

where is the total energy functional, C = FTF is the right Cauchy-
Green deformation tensor, J = det(F), and p(R) is a hydrostatic
pressure (Lagrange multiplier) enforcing the incompressibility
constraint. Note that for the case of spherically symmetric

swelling within an elastic matrix, p(R) is non-constant and
determined from the differential equation

divðrÞ ¼ div
1

J

@W

@F
FT

� �
¼ 0; (4)

where r denotes the Cauchy stress tensor. Applying stress-free
boundary conditions at the outer boundary such that srr|r-r1 =
0 completely determines p(R). Note that this boundary condi-
tion characterizes the dilute swelling regime, in which the
induced stress fields within the matrix material around swel-
ling inclusions do not overlap.

For subsequent computations within the framework of

linearized elasticity, the elastic modulus CIJKL ¼
@2W

@CIJ@CKL
is

moved to the spatial configuration as22

Cijkl ¼
1

J
FiIFjJFkKFlLCIJKL: (5)

Note that by enforcing eqn (5) as the incremental stiffness,
dependencies on step sizes as encountered in incremental
tangent approaches are circumvented.

B. Homogenized matrix stiffness

The deformation upon swelling derived in Section IIA induces a
continuous stiffening of the elastic matrix. To compute the
incremental effective matrix stiffness as a function of pre-
stretch lR, Cijkl from eqn (5) is written in a Cartesian coordinate
frame as

C̃abcd = CiaCjbCkcCldCijkl, (6)

where Cij is the transformation matrix describing the mapping
between spherical and cartesian coordinate frames.

An upper bound on the effective matrix stiffness (also
denoted as the Voigt bound) is calculated by assuming a
homogeneous state of strain within the material.23 Starting
from the equations of equilibrium in spatial form within the
framework of linearized elasticity with internal constraints,
we have

sij ¼ ~Ceffijkluk;l � ~pdij ; with (7)

~Ceffijkl ¼
1

VM

ðR1

R0

ð2p
0

ðp
0

~Cijkl sinðyÞR2 dy dj dR: (8)

Here, uk,l denotes the displacement gradient and VM denotes
the volume of the elastic matrix. p̃ is a second Lagrange multi-
plier, which enforces that also the linearized material behaves
as an incompressible solid. Component-wise integration of the
elastic modulus specified in eqn (8) is performed numerically
using global adaptive methods. Note that the volume integral in
eqn (8) may also be thought of as the ’mean spherical approxi-
mation’ of the Wigner–Seitz cell.24

We are now in place to calculate the effective stiffness Eeff
M (F) of

the matrix material. Note that ~Ceffijkl constitutes a homogeneous and

isotropic elastic modulus, such that Eeff
M (F) is unique. Under

uniaxial stretch conditions, we have sij = ((sxx,0,0), (0,0,0),

Fig. 1 Deformation mapping from the undeformed state (R0, R1) to the
deformed state (r0, r1). Corresponding stiffness tensors are denoted as CiJkL

prior to linearization, and C̃eff
ijkl after linearization and homogenization.
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(0,0,0)) and uk;l ¼ ðexx; 0; 0Þ; 0;�exx
2
; 0

� �
; 0; 0;�exx

2

� �� �
. Eqn (7)

may thus be solved for both p̃ as well as Eeff
M (F), which is the pre-

factor relating sxx and exx.
So far, we have computed the macroscopic effective stiffness

Eeff
M (F). Since we know the closed-form solution of ~Cijkl at each

material point (prior to integration), we are furthermore inter-
ested in the local unidirectional stiffness EM(F,f). Here, f A S(f)
is any direction on the unit sphere S(f). EM(F,f) thus denotes
the local stiffness into the direction f at a material point.

The local unidirectional Young’s modulus E(f) in compres-
sible materials is computed as25

EM(F,f) = (S̃ijklzizjzkzl)
�1, (9)

with compliance tensor ~Sijkl ¼ ~C�1ijkl . We extend this concept to
incompressible materials starting from eqn (7) and enforcing
that tr(e) = 0, which gives

EMðF; 1Þ ¼ ~Sijklzizjzkzl �
~Sijklzizjdkl

~Smnopdmndop
~Sqrstdqrzszt

 !�1
: (10)

III. Results

Exploiting the fully analytical solution for the local unidirec-
tional Young’s modulus, we compute 3D stiffness maps (also
denoted as elastic surfaces) for materials exhibiting different
degrees of strain stiffening. For these purposes, the generic
model outlined in the previous section is tailored to a Neo-
Hookean material, as well as a Yeoh material up to second
order. Elastic surfaces of strain stiffening materials highlight
both anisotropy and inhomogeneity. We quantify the degree of
strain stiffening necessary for an increase of incremental stiff-
ness. Furthermore, we show how elastic surfaces provide a
graphical interpretation relating to the homogenized matrix
response.

To validate the outlined generic framework, the homoge-
nized matrix response is compared to experimental data.5

Inhomogeneous Lagrange multipliers, as well as the incremen-
tal stiffness are derived in closed form. Finally, we exemplify
how the upper bound construction derived in the foregoing
allows for a characterization of distinct swelling regimes.

A. Characteristics governing effective matrix stiffness

In Section IIB, we developed a closed-form analytical solution
for the local stiffness around an isolated droplet, shown in
eqn (10). We exploit this solution to explore unidirectional
Young’s moduli of the anisotropic, inhomogeneous matrix at
the material point level for materials exhibiting different
degrees of strain stiffening. To this end, the generic model
outlined in Section IIB needs to be tailored to a specific
material model. Here, we choose to model the elastic matrix
as a Yeoh material with strain energy density

WYeoh ¼ m
2
trðCÞ � 3ð Þ þS trðCÞ � 3ð Þ2�pðRÞðJ � 1Þ; (11)

where m is the shear modulus and S is the strain stiffening
parameter. Application of linear momentum balance (4) gives

pðR0Þ ¼
S

5

80r0
9þ120r07R0

2�30r04R0
5�8r03R0

6þ15R0
9

r80R0

�

þ5R1
9þ8R1

6~r�30R1
5~r4=3þ40R1

3~r2�120R1
2~r7=3�80~r3

R1~r8=3

�

þm
2

R0
4

r04
�4R0

r0
þR1ð4r03�4R0

3þ5R1
3Þ

~r4=3

� �
(12)

for the hydrostatic pressure at the inflation boundary, where r̃ =
r0

3 � R0
3 + R1

3. Fig. S7 in the ESI† illustrates p(R) for varying
inflation levels r0/R0.

Even though the matrix is originally isotropic, swelling
creates an anisotropic incremental stiffness. The degree of
elastic anisotropy increases with swelling. Fig. 2a shows 3D
polar plots of the incremental stiffness, which are known as
elastic surfaces. These elastic surfaces highlight pronounced
radial stiffening with a non-monotonic change in stiffness in
the hoop direction. Starting from the isotropic state at r0 = R0,
the elastic surface at fixed position (R = R0, y = 0, j = 0)
gradually evolves into a rhomboidal shape at a low swelling
value of r0 = 1.15R0. The anisotropy in stiffness is markedly
pronounced with increasing swelling. While radial stiffening
dominates at all swelling levels, elastic surfaces develop a
pronounced neck in higher swelling regimes. We find that
the softest material response is attained at ymin B 541
(eqn (10) can be utilized to analytically solve for y minimizing
unidirectional Young’s modulus EM). Fig. 2 furthermore high-
lights isotropy within the azimuthal direction j.

Swelling also induces inhomogeneity within the matrix
material, as illustrated in Fig. 2b, as well as Fig. S8 in the ESI.†
Anisotropy is most pronounced at the matrix/inclusion inter-
face (R = R0) and rapidly decreases with increasing R, which is a
common feature at all strain levels. This is in agreement with a
fast decay in stretches, see Fig. S6 in the ESI.†

Fig. 2c shows the incremental stiffness under the angle ymin

of softest material response as a function of swelling level s for
materials exhibiting different degrees of strain stiffening. For
S = 0, the Yeoh-model reduces to a Neo–Hookean solid. In this
limit, the incremental stiffness EM(ymin) is decreasing. We
calculate a limiting value of S = m/1000 for an increasing
incremental stiffness.

Elastic surfaces allow for an intuitive illustration of the
homogenized matrix stiffness at the material point level. The
integral over (y,j) in eqn (8) may be illustrated as the volume
enclosed within elastic surfaces. A continuous increase of
homogenized matrix stiffness is thus equivalent to a continu-
ously increasing enclosed volume within elastic surfaces. At the
continuum level, this homogenized matrix stiffness allows for
validation with experimental data, as outlined in the following
section.
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B. Comparison to experiments

To illustrate the characterization of swelling regimes, we com-
pare the homogenized matrix model outlined in Section IIB to
recent experimental data on hydroelastomers.5 In experiments,
sodium polyacrylate (NaPAA) microgels of varying mass frac-
tions are embedded in an elastomeric matrix. For validation
purposes, we focus on the case R1 = 2.3R0 (which corresponds to
10 wt% NaPAA). As shown in Fig. 3, the composite stiffness E

shows distinct swelling regimes, which are governed by an
interplay between softening of the particle and stiffening of
the elastic matrix. The initial decrease in composite stiffness is
attributed to a steep drop in particle stiffness upon swelling
(see blue shaded area in Fig. 3).

The inset in Fig. 3 illustrates the stiffness of the pure particle
material upon swelling,5 which monotonously decreases from the
initial value of EP

0 for dry NaPAA). Subsequently, matrix stiffening
starts to dominate over particle softening, resulting in an increase
in composite stiffness (see yellow shaded area in Fig. 3).

Mean-field homogenization as introduced in Section IIB
furnishes an upper bound on material properties. Here, we
employ the corresponding upper (Voigt) bound to extract the
incremental matrix stiffness from experimental data. In addi-
tion to the hyperelastic matrix material, this construction
allows for generic inclusion phases. Exploiting a negligible
particle stiffness at swelling values beyond 50 wt%, an upper-
bound for Young’s modulus of the matrix material is inferred
from the Voigt bound as EM = E/(1 � jh),23 with jh the volume
fraction of microgel particles. While the hyperelastic matrix is
modeled as incompressible, employing a Voigt bound pre-
scribes inclusions to change in volume by the amount of added
liquid. This is in keeping with classical mixture theories such as
Flory–Huggins solution theory. As shown in Fig. 4, the matrix
material undergoes a continuous increase in stiffness. This
stiffening is captured well by the homogenized matrix model
outlined in Section IIB, which agrees with measurements
within experimental error bounds. Our prediction has no free
parameters, we used the experimental values rP = 1220 kg m�3,
rM = 1000 kg m�3, m = 0.37 MPa and S = 0.02 MPa.

Fig. 3 Experimentally measured composite stiffness E for 10 wt% NaPAA
particles embedded in smooth-on Dragonskin 30 (Sil-DS).5 Initial Young’s moduli
of the particle- and matrix material are EP

0 = 13 MPa and EM
0 = 1.12 MPa,

respectively. s gives the scaling parameter r0 = sR0. The inset highlights a
separate measurement of particle’s Young’s modulus EP upon swelling.5

Fig. 2 Impact of swelling on the local stiffness around an inclusion. (a) Incremental stiffness for increasing swelling levels r0 = sR0: Elastic surfaces
illustrating Ei at fixed (R = R0, y = 0, j = 0) for different directions zi (R1 = 2.3R0 and S = m/20). (b) Density maps showing Ez at (y = 0, j = 0) and Ex at (y = p/
2, j = 0) throughout the matrix. (c) Incremental stiffness under the angle ymin of softest material response as a function of swelling level s for materials
exhibiting different degrees of strain stiffening.
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Note that the chosen Yeoh strain energy density given in
eqn (11) allows for a continuous change between a classical
Neo–Hookean model (S = 0) and a material exhibiting strain
stiffening, where the degree of strain stiffening is controlled by
the magnitude of S. Fig. 4 (inset) illustrates the transition from
a Neo–Hookean model to a material with S = m, the shear
modulus of the matrix. Material parameters m and S are
obtained from comparing to the pure, dry Sil-DS matrix when
stretched uniaxially5 (see orange curve in the inset in Fig. 4).

In combination, Fig. 3 and 4 allow for the characterization of
three distinct swelling regimes: First, the initial drop in com-
posite stiffness is solely governed by particle softening (see blue
shaded area in Fig. 3). We refer to this as the particle softening
regime. At higher swelling values, matrix stiffening starts to
dominate the composite response (see yellow shaded area in
Fig. 3). We can differentiate the regime of matrix stiffening
according to the degree of swelling (see Fig. 4). In the begin-
ning, elastic matrix stiffening is solely governed by the growth
of isolated particles. We refer to this as the dilute stiffening
regime. This regime corresponds to the theoretical model
presented in Section IIA. At higher swelling ratios, stress fields
induced by previously isolated growing particles start to over-
lap, such that particle–particle interactions influence the resul-
tant matrix stiffening. We refer to this as the particle
interactions regime.

While the theoretical model is targeted towards capturing
the dilute swelling regime, we can exploit its set-up in order to
identify the transition to a particle interactions regime in
experimental data sets. As the homogenized matrix model is
based on a mean field approach, it furnishes an upper bound
on the homogenized matrix stiffness. Any measurements
above model predictions must hence be governed by stiffening
mechanisms beyond the dilute setting. At swelling values
up to B50 wt% water within the composite, the matrix is
therefore strain stiffening in the dilute limit, whereas particle

interactions dominate the behavior at larger swelling values
(see shaded areas in Fig. 4).

IV. Discussion and outlook

We have developed a generic model to predict the incremental
stiffness of inhomogeneously swollen elastomers incorporating
growing spherical inclusions of negligible Young’s modulus.
The outlined model is applicable to a large class materials,
which includes systems incorporating both encapsulated osmo-
lytes and microgels. At the material point level, the incremental
stiffness is derived in closed form, which allows to quantify
shapes of elastic surfaces. The stiffest material response will be
attained for radial loadings initiating at the matrix/inclusion
interface, while the material is most compliant at yminB 541.
Zooming out to the homogenized material response, our results
suggest that a simple model based on incremental mean field
homogenization agrees well with experimental data in the
dilute swelling regime. The upper bound construction further-
more allows to distinguish three distinct swelling regimes.

Future studies on a detailed model of higher swelling
regimes, in which particle–particle interactions dominate the
matrix behavior, could aid in predicting optimal initial mass
fractions of inclusions and upper swelling limits. Recently
developed numerical frameworks could readily be tailored to
this purpose.26 In addition, solutions to the exact boundary
value problem without homogenization could aid in elucidat-
ing additional stiffening effects, such as the pressure acting at
the inclusion/matrix interface. These further routes could facil-
itate to not only qualitatively, but also quantitatively identify
different swelling regimes. The outlined framework further-
more lends itself to a straightforward extension to anisotropic
inclusion growth/stiffening, which is solely based on the spe-
cific strain energy density chosen in eqn (11).

Characteristics of the anisotropic and inhomogeneous
matrix may be exploited in the design of novel synthetic
hydrated composites and metamaterials. Future experiments
could highlight the swelling induced anisotropy by tracking
particle shapes in the swollen state upon uniaxial stretch. As an
example of exploiting matrix anisotropy, the matrix/microgel
system might act as a mechanical resonator, capable of redu-
cing vibrational amplitudes induced by environmental changes
(such as humidity when using hydrogel inclusions). Moreover,
the angle of softest response at ymin is close to the direction of
maximum shear stresses in simple tension, which could be
utilized in the design of materials actively tuning shear com-
pliance according to changes in, e.g., humidity. For design
goals of maximizing composite stiffness, target ‘sweet spots’
are regimes in which strain stiffening dominates over compo-
site softening due to higher water contents.

Conflicts of interest
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Fig. 4 Matrix stiffness EM inferred from experimental data (10 wt% NaPAA
particles embedded in Sil-DS5) in comparison to the theoretical model of
homogenized matrix stiffness. The inset illustrates different degrees of
strain stiffening S, with S B m/20 highlighting the prediction from fitting
to the pure Sil-DS matrix.
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12 E. Kröner, Berechnung der elastischen konstanten des
Vielkristalls aus den konstanten des Einkristalls, Z. Phys.,
1958, 151, 504–518.

13 R. Hill, A self-consistent mechanics of composite materials,
J. Mineral. Petrol. Sci., 1965, 13, 213–222.

14 D. R. S. Talbot and J. R. Willis, Variational principles for
inhomogeneous non-linear media, J. Appl. Math., 1985, 35,
39–54.
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17 P. Kanouté, D. Boso, J. Chaboche and B. Schrefler, Multi-
scale methods for composites: A review, Arch. Comput.
Methods Eng., 2009, 16, 31–75.

18 M. Geers, V. Kouznetsova and W. Brekelmans, Multi-scale
computational homogenization: Trends and challenges,
J. Comput. Appl. Math., 2010, 234, 2175–2182.

19 J. Llorca, C. Gonzalez, J. M. Molina-Aldareguia, J. Segurado,
R. Seltzer and F. Sket, et al., Multiscale modeling of compo-
site materials: a roadmap towards virtual testing, Adv.
Mater., 2011, 23, 5130–5147.

20 S. Nemat-Nasser and M. Hori, Micromechanics: overall prop-
erties of heterogeneous materials, Elsevier, 2013.

21 L. Wu, L. Adam, I. Doghri and L. Noels, An incremental-
secant mean-field homogenization method with second
statistical moments for elasto-visco-plastic composite mate-
rials, Mech. Mater., 2017, 114, 180–200.

22 E. B. Tadmor, R. E. Miller and R. S. Elliott, Continuum
Mechanics and Thermodynamics: From Fundamental Concepts
to Governing Equations, Cambridge University Press, 2011.

23 W. Voigt, Ueber die Beziehung zwischen den beiden Elasti-
citaetsconstanten isotroper Koerper, Ann. Phys., 1889, 274,
573–587.

24 F. Seitz and E. Wigner, On the Constitution of Metallic
Sodium, Phys. Rev., 1933, 43(10), 804.

25 T. Boehlke and C. Brueggemann, Graphical representation
of the generalized Hooke’s law, Tech. Mech., 2001, 21(0),
145–158.

26 Z. Hooshmand-Ahoor, M. G. Tarantino and K. Danas,
Mechanically-grown morphogenesis of Voronoi-type materials:
Computer design, 3D-printing and experiments, 2022.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 9

/4
/2

02
4 

7:
14

:4
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3SM00496A



