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Fluid interfaces laden by force dipoles: towards
active matter-driven microfluidic flows

Kuntal Patel * and Holger Stark

In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new

avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this

article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with

identical densities but different viscosities flow through a microfluidic channel. Most importantly, the

fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby

generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics

of the interface and an advection–diffusion equation for the density of active particles. We show that

only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from

which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to

the surface tension is necessary to trigger the instability. Since activity depends on the density of force

dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet

formation using switchable activity.

I. Introduction

Rapid advancement in processing fluids on the micron scale
has given rise to various applications in chemical analyses,1

biology,2,3 medical diagnosis,4,5 and many more. Such minia-
turized flow-control platforms are referred to as microfluidic
lab-on-a-chip devices.6–8 Typically, microfluidic flows occur at
low Reynolds numbers and, therefore, obey kinematic reversi-
bility, which sets restrictions on the realizable flows and their
applications.9 To extend the use of microfluidic devices, one
needs to introduce nonlinearities, for example, through inertial
microfluidics or viscoelastic fluids.9,10 This field of nonlinear
microfluidics has opened new avenues for droplet genera-
tion11–13 and cell sorting applications.14–18 In addition, non-
linear processes in microfluidic devices are also initiated by an
external electric field, which induces electroosmotic flows,19–21

and acoustic fields, which generate surface acoustic waves
traveling along substrates.22,23 Furthermore, microfluidic
devices with compliant structures are known to cause a non-
linear response of the flow rate to the pumping pressure.9,24

Aside from nonlinear microfluidics, the development of other
microfluidic techniques has immensely contributed to the
overall progress of the field. Two such examples are light-
driven25 and digital microfluidics26 for manipulating droplets.
In this article we introduce yet another mechanism to design

and control microfluidic flow by introducing active particles at
fluid interfaces.

We investigate a microfluidic system in combination with
ideas from the field of active matter. This is a relatively new and
less explored strategy to control and shape fluid flow at low
Reynolds numbers. The entities of living or artificial active
systems consume the ambient free energy to propel themselves
and exert forces.27–30 In practice, the scale of active matter
systems ranges from nanometers to meters.31,32 A bacterial
suspension is one example that belongs to a micron-sized
active matter system. It is well known now that the collective
motion of bacteria can generate chaotic flow structures called
active turbulence.33–35 Researchers36–39 have also demonstrated
that such a bacterial bath can drive the continuous rotation of
microscopic gears, which can be utilized as microfluidic mixers
or energy harvesters. Another interesting system is a suspen-
sion of flexible active filaments made, e.g., by mixing micro-
tubule with motor proteins40 and termed active nematic
fluid.29,41 Without activity it assumes an isotropic ground state.
However, tuning the activity beyond a critical value, a hydro-
dynamic instability occurs and the fluid begins to flow.42 Later,
using numerical simulations, Chandragiri et al.43 demonstrated
that the turbulent flow becomes unidirectional in sufficiently
narrow microchannels resulting in the net transport of fluid
along the channel. Hence, active fluids are an alternative for
driving fluid flow without using microfluidic pumps. Recently,
Rorai et al.44 studied the channel flow of active nematics with
hybrid alignment at the channel walls. Within microfluidic
applications, we also mention theoretical work on active matter
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logic45 and experimental work on active matter in circular
channels46 and driven by light.47

In this article, we take up the idea of combining microfludic
flow with active entities. We focus on a multi-component
microfluidic setup, in contrast to the systems with a single
fluid component described in the last paragraph. Earlier,
Alonso and Mikhailov48 employed interfacial active molecules
to generate turbulence at the liquid–air interface of a thin
liquid film. They noted that the destabilization of the interface
occurs only for a sufficiently high value of particle concen-
tration and activity. Following this, Pototsky et al.49 looked at
the dynamics of a micron-sized thin liquid film with self-
propelling point-like swimmers, which act as insoluble surfac-
tants. As a result of the upward motion of swimmers against
the film interface, they observed interesting interfacial patterns
in their numerical simulations. Most recent experiments by
Adkins et al.50 revealed a highly dynamic fluid interface
between an active and passive fluid, which is caused by the
chaotic flow within the active fluid. They also reported that a
gradual increase in activity eventually disrupts the fluid inter-
face, which results in the formation of active emulsions.
Further examples of active surfaces are described in ref. 51
and 52. Although there have been some efforts to leverage
active matter into microfluidics, developing such a strategy for
multi-component microfluidic systems remains scarce. In the
present study, we introduce theoretical ideas as early steps for
designing multi-component microfluidic flow devices fueled by
active matter. The practical realization of these concepts holds
great potential to impact a broad spectrum of applications, e.g.,
cell encapsulation,53 drug delivery,54 and particle synthesis.55

In the present work, we consider a microfluidic channel that
contains two fluid layers separated by a fluid interface with
surface tension s. The fluids have identical densities but
different viscosities. Most importantly, we cover the fluid inter-
face with active particles that act with force dipoles on the
surrounding fluid, one of the typical characteristics of active
matter systems. The setup with two fluid layers is of funda-
mental relevance and ubiquitous in various microfluidic
devices.56 We study the flow induced by the interfacial force
dipoles and its effect on the fluid interface using hybrid lattice-
Boltzmann finite-difference simulations, where the fluid inter-
face is described by a phase field model. Our numerical results
show that contractile force dipoles destabilize the flat fluid
interface so that multiple breakups occur, where droplets form.
In contrast, when laden with extensile dipoles, the interface stays
flat. For interfaces with non-zero surface tension, we derive the
critical value of activity necessary to trigger the instability. Since
activity depends on the density of force dipoles, the interface can
develop a steady deformation. Finally, we show how to control
droplet formation with a switchable activity.

The outline of the article is as follows. In Section II we first
introduce our microfluidic configuration with an active fluid
interface, followed by the explanation of the governing laws and
numerical methodology. The simulation results of our systema-
tic investigations are presented in Section III. We conclude our
work with final remarks in Section IV.

II. Methods
A. Setup of active microfluidics

The schematic of our computational setup is depicted in Fig. 1.
We consider a two-dimensional microfluidic channel by
placing two parallel walls at a distance w from each other in
the y-direction while along the x-direction periodic boundary
conditions are used [see Fig. 1(a)]. The channel is filled with
two fluid layers of thickness h (bottom layer) and w–h (top
layer), respectively. Both fluid layers have identical densities r
while the bottom fluid (fluid 1) is more viscous than the top
fluid (fluid 2), which we quantify by the viscosity contrast
m = m1/m2 4 1. Finally, the fluid interface separating fluids 1
and 2 has surface tension s. In the following, it is disturbed by
imposing an interfacial perturbation of wavelength l.

The important feature of the present problem is that the
fluid interface contains active particles, as shown in Fig. 1(b).
The activity of these particles gives rise to force dipoles as
depicted in Fig. 1(b) that generate flows in the fluids adjacent
to the interface. We assume that the active particles are much
smaller than the channel width w, so that they can be con-
sidered as point particles. The dipole-laden interface in a
continuum approximation is shown in Fig. 1(c), where the
two opposing forces of the dipole are represented by red and
blue colors. We impose the following constraints on the active
particles to simplify the present problem:
� They are tied to the fluid interface, while they are free to

slide along it, and
� They are always oriented perpendicular to the fluid interface.
The notion of active particles residing at the fluid interface

is inspired by insoluble surfactants found in practice, which get
adsorbed at the interface.57 Motivated by this, Alonso and

Fig. 1 (a) A microfluidic channel of width w contains two fluids of the
same density r but different viscosities m1 and m2 (m1 4 m2). The interface
separating the top and bottom fluids is initially perturbed by a sinusoidal
modulation with wavelength l. (b) The sketch shows the zoomed-in view
of the fluid interface covered with active particles, which are oriented in
the direction normal to the interface. The red and blue arrows indicate the
force dipole induced by active particles. (c) The equivalent of (b) in the
continuum limit. The red and blue stripes represent the magnitude of
the force dipole density.
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Mikhailov48 and Pototsky et al.49 also implemented interfacial
active agents. In addition, two-fluid setups with Janus particles
trapped at the interface have also been widely studied.58–60 The
surface of Janus particles can be treated to have different
wettabilities so that the top and bottom halves of particles
prefer opposite fluids adjoining the interface, orienting parti-
cles perpendicular to the interface.61 The wettability contrast
suppresses perturbations in the orientation and reorients par-
ticles perpendicular to the interface, as shown by Gao et al.62

This justifies our simplification of the particle orientation.
The force dipoles at the interface generate stresses, which

we describe by the active stress tensor63

Ta
ij = WC(x,t)ninjds, (1)

where C(x,t) is the areal concentration of active particles and W is
the force dipole moment so that WC(x,t) quantifies the strength of
activity with unit of force � distance per unit area. Moreover, the
force dipoles are oriented along the interface normal n and ds

approximates the delta function, which is situated at the fluid
interface such that Ta

ij varies smoothly across the interface.
Thus, the fluid interface is not a sharp boundary but we

describe it with the help of a phase field f that is represented
by a smooth step function varying between f = 0 (fluid 2) and
f = 1 (fluid 1). The dynamics of f follows a phase field equation
as we detail in Section II B [see eqn (7)]. The interface normal is
then given by n =rf/|rf| and ds = n�rf = |rf|. Note that ds is
normalized to one, as it should, since f varies between 0 and 1.

By taking the divergence of the active stress tensor, the effect
of activity can also be formulated as an active body force

Fa ¼ r � Ta ¼ f an; (2)

where the magnitude f a is obtained by projecting the diver-
gence of the active stress tensor on the normal direction: f a = T
a
ij,jni. A tangential component is negligible since the phase field
eqn (7) approximately keeps the equilibrium profile for the
deforming interface. Upon setting W 4 0 in our model, we

obtain contractile force dipoles
#
" [see Fig. 1(b)] and extensile

force dipoles
"
# for W o 0.63 The flowchart in Fig. 2 describes

how our system evolves in the presence of a non-zero active
body force Fa. To fully describe such a system, we need laws
that govern the concentration of active particles at the interface
as well as the motion of the interface and the flow of the bulk
fluids. Since the interface implicitly determines the orientation
of active particles, we do not need an additional equation to
describe the orientation of active particles. We now proceed to
discuss the required governing laws and numerical methods to
solve them using computer simulations.

B. Governing equations

The flow arising in the bottom and top fluids due to the force
dipoles (see Fig. 1) is governed by the continuity equation
(conservation of mass)

r�u = 0 (3)

and the Navier–Stokes equation for the flow field u (conserva-
tion of momentum),

r
@u

@t
þ u � ru

� �
¼ �rpþ mr2uþ Fa þ Fs; (4)

where the viscosity is given by m�1 = fm1
�1 + (1 � f)m2

�1 so that
it varies smoothly between fluid 1 and 213,64 and Fs is the body
force arising from the surface tension when the interface bends
[see eqn (11)].

Since in our model the total number of active particles along
the deforming fluid interface S(t) is conserved,

N ¼
ð
SðtÞ

Cðx; tÞds ¼ const:; (5)

the concentration C(x,t) obeys a continuity equation with
advective and diffusive currents. So the resulting interfacial
advection–diffusion equation reads:65

@C

@t
þrs � Cusð Þ þ Ck u � nð Þ ¼ Drs

2C; (6)

where rs ¼ I� n� n
� �

� r is the gradient operator and

us ¼ I� n� n
� �

� u the velocity vector, both projected onto

the fluid interface. The third term on the left-hand side arises
since any curvature k = rs�n = r�n of the fluid interface
enhances the surface area and thereby changes the concen-
tration. Since we are working with a smooth interface, one can
show that eqn (6) is still valid with C replaced by Cds and the
projection (index s) is not needed.66

The presence of finite-sized particles at the fluid inter-
face deforms the interface due to their weight, giving rise to

Fig. 2 Time evolution of the fluid interface in the active microfluidic setup
(see Fig. 1). The active body force drives fluid flow via eqn (4), which
displaces and deforms the interface described by phase field f and its
dynamics in eqn (7). This reorients the force dipoles and modifies their
density C via eqn (6), so that the body force needs to be updated via
eqn (2).
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capillary interactions.67,68 Nevertheless, capillary interactions
can be safely neglected for micron or submicron-sized particles
with smooth surfaces.67 Furthermore, closely placed active
particles that induce force dipoles undergo hydrodynamic
interactions.69,70 The leading-order hydrodynamic interactions
drive particles closer (extensile dipoles) or away (contractile
dipoles) from each other and reorient them.71 In the dilute
limit, hydrodynamic interactions between active particles can
be neglected. Moreover, since we consider the fixed particle
orientation with respect to the fluid interface, it is sufficient to
use the interfacial advection–diffusion equation [eqn (6)] to
describe particle dynamics.

As introduced earlier, the phase field f describes the diffuse
interface between fluid 1 and 2 centered around the isoline
with f = 0.5 (see Fig. 3). Its time evolution is governed by the
conservative advection equation13,64,72

@f
@t
þr � fuð Þ ¼ Sf: (7)

The interfacial source term,

Sf ¼ r � M rf� 1� 4 f� 0:5ð Þ2

x
n

 !" #
; (8)

which is zero in the bulk fluids, is chosen such that in
equilibrium one recovers the typical hyperbolic tangent profile
for the phase field or order parameter,

feq zð Þ ¼ 1

2
þ 1

2
tanh

2z
x

� �
: (9)

Here, z is the coordinate normal to the interface with the origin
z = 0 located in the center of the interface and x is the width of
the profile.

Now, choosing the mobility M in eqn (8) sufficiently large,
the equilibrium shape of the profile is approximately preserved
even if the system becomes dynamic.73,74 Note that the hyper-
bolic tangent profile agrees with the equilibrium solution of the
Cahn–Hilliard phase field equation, which has been derived
using physical arguments.75 In the following we will use the

modified phase field eqn (7) since the computational imple-
mentation of the second-order differential equation is relatively
simple compared to the fourth-order Cahn–Hilliard equation.

To formulate an equation for the body force Fs related to
surface tension, we start with a two-fluid free-energy functional
that captures the energy of the fluid interface,76–78

F f½ � ¼
ð
12
s
x
f2 f� 1ð Þ2þðx=4Þ2jrfj2
h i

d3x: (10)

The minima of the double-well potential of the first term in the
integrand correspond to fluid 1 and 2, respectively, and the
gradient term guarantees a smooth interface of width x. Indeed,
the equilibrium profile feq of eqn (9) minimizes the free-energy
functional: dF[feq]/df = 0. Moreover, the free energy F[feq] in
the interface per surface area As, is a measure for the surface
tension s = F[feq]/As.

Deforming a plane interface, generates a surface-tension
body force, which can be given as79,80

Fs ¼ dF
df
rf: (11)

Using the interface curvature

k ¼ ni;i ¼
1

jrfj
@2f
@xj@xj

� @2f
@xl@xm

nlnm

� �
; (12)

one can rewrite this as

Fs ¼ � 3

2
sxkjrfj2n

þ 12
s
x

4f f� 0:5ð Þ f� 1ð Þ � x2

8

@2f
@xi@xj

ninj

� �
rf:

(13)

Now, for fluid interfaces moving slowly compared to the
relaxation time associated with the dynamics of the phase field
f, the interface profile is approximately given by feq. Then, one
can show that the term in the square brackets is small against
the first term in eqn (13). Thus the surface-tension body force

can be approximated by Fs � �3
2
sxkjrfj2n. We will use this

later for some qualitative arguments, while in the simulations
we employ the full expression of eqn (13).

C. Numerical methodology

We employ a hybrid lattice-Boltzmann finite-difference scheme
to solve the governing equations numerically. Specifically, the
lattice-Boltzmann method81 is applied to determine the fluid
flow [eqn (3) and (4)] and to simulate the interface dynamics
[eqn (7)], while the interfacial advection–diffusion equation
[eqn (6)] is discretized and solved using the finite-difference
scheme. The details of the lattice-Boltzmann implementation
can be found in our recent work.13 The same approach is used
for the current solver. To implement the finite-difference solver
for eqn (6), we follow the methodology proposed by Teigen
et al.66 This approach solves eqn (6) in the entire domain by
extending the interfacial concentration C(x,t) as a constant in
the direction normal to the fluid interface, such that

Ð
S tð ÞCdS ¼Ð

VCdsdV ; where V is the domain volume. Furthermore, we use

Fig. 3 One-fluid representation of the current multi-component system
with density r(x,t) and viscosity m(x,t) in the framework of a diffuse interface
using the phase field f.
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the modified Crank–Nicolson method82 to integrate in time
and the 5th-order accurate WENO (Weighted Essentially Non-
Oscillatory) scheme83 to handle the advection term.

In the simulations we use 512 grid points across the channel
width w and set the interface width x to 4 lattice units. In our
earlier work,13 we successfully tested and used the same grid
resolution (derived using grid convergence) for a similar geo-
metry and fluid parameters but with two interfaces and without
activity. There, the problem was even more complex because of
the high inertia of the background flow and complex interface
topology (see Fig. 18 and 21 of ref. 13). For the remaining
discussion, all fluid properties and parameters related to the
activity (i.e., r, m, s, C, D, and W) are in units of the lattice-
Boltzmann method. To non-dimensionalize thickness h, per-
turbation wavelength l, amplitude A(t), and time t, we use
channel width w and viscous time scale w2r/mm, where mm =
2m1m2/(m1 + m2) is the mean viscosity. Unless stated otherwise,
we fix the thickness of the bottom fluid layer to h = 0.5 and the

diffusivity of active particles to D = 0.11, which guarantees a
uniform distribution of the active particles along the deforming
interface.

III. Results and discussion
A. Activity-induced instability of the interface

To understand the role of active interfacial stresses in our
system, we start with two fluids with a viscosity ratio of
m = 30. Furthermore, we select an initial active particle concen-
tration of C(x,0) = 0.5 and set interfacial tension s to zero, so
that one can clearly notice the effect of activity (a discussion on
the influence of s will follow in Section III B). On perturbing the
fluid interface by a sinusoidal modulation of wavelength
l = 0.5, we observe that the interface covered with contractile
force dipoles of force dipole moment W = 2 � 10�5 becomes
unstable. In contrast, extensile force dipoles with W = �2 � 10�5

Fig. 4 Snapshots of the fluid interface and flow field at time t = 0.041 for (a) W = 2� 10�5 and (b) W = �2� 10�5. In (c) and (d) the snapshots for W = 2�
10�5 show the effect of force components fa1 and fa2, respectively. The velocity magnitude is given in units of the maximum flow velocity |u|max induced by
the component fa

2 at t = 0.041. (e) The amplitude of the interfacial perturbation plotted vs. time for W = 	2 � 10�5. (f) For W = 2 � 10�5 the amplitude is
plotted for the total active force fa and its two components fa1 and fa

2. (g) Schematic to understand the interfacial instability caused by contractile force

dipoles
#
" in (a). The remaining parameters are l = 0.5, m = m1/m2 = 30, s = 0, and C(x,0) = 0.5 (N = 131).
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attenuate the interfacial perturbation [see Fig. 4(e)]. The contrac-
tile dipoles drive a vortex pair that lets the interfacial perturbation
grow, as shown in Fig. 4(a). The vortex pair consists of counter-
clockwise and clockwise circulation zones situated halfway
between the peak and the two valleys of the interfacial height
profile. For extensile force dipoles, the direction of circulation
reverses [see Fig. 4(b)], driving the system back to the flat fluid
interface.

To qualitatively explain the activity-driven instability, we
consider the schematic shown in Fig. 4(g). The neutral state
represents the flat fluid interface laden by contractile force
dipoles. Orange and blue-colored circles represent the two
forces in the dipole. They are of the same magnitude and act
normal to the interface on the respective fluids as indicated by
the arrows. On bending the fluid interface the density of the
outer forces (blue) decreases, while the density of the inter
forces (red) increases. This generates a normal stress across the
interface that drives the destabilizing flow for W 4 0. One can
compare this with the Laplace pressure acting across the
interface, which balances the interfacial tension due to the
increased interface. Later, in Section III B, we will elaborate
more on the similarities and differences between the destabi-
lizing active force and the stabilizing surface-tension force.

We further substantiate our qualitative explanation using
mathematical reasoning. The magnitude of the active body
force f a already introduced in eqn (2) can be written in
expanded form as

f a ¼WCnj
@ds
@xj

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

f a
1

þWCkds|fflfflfflffl{zfflfflfflffl}
f a
2

þWdsnj
@C

@xj

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

f a
3
¼0

: (14)

The force f a
3 vanishes since the areal concentration C(x,t) only

varies along the interface and not perpendicular to it. More-
over, for a flat interface the force f a

2 proportional to the
curvature k = nj,j is zero, which corresponds to the neutral state
shown in Fig. 4(g). We investigated the effect of the force
components, f a

1 and f a
2, on the observed interfacial instability

by setting the other component to zero in our simulations. It
turns out that for W = 2 � 10�5 the magnitude of the flow
induced by f a

1 is very marginal compared to the flow initiated by
f a

2, as Fig. 4(c) and (d) show. As a result, the component f a
1 does

not contribute to the growth of the interfacial perturbation [see
Fig. 4(f)]. Hence, the instability is solely driven by the force
component f a

2 proportional to the interface curvature k. This
confirms our qualitative explanation using the schematic of
Fig. 4(g).

We further quantify the interfacial instability using disper-
sion curves. As before, we employ the same viscosity ratio
m = 30 and force dipole moment W = 2 � 10�5 and set the
interfacial tension s to zero. We start from a flat fluid interface
and impose single-mode interfacial perturbations with the
rescaled wavenumber k/2p = l�1 ranging from one to eight
and an amplitude A = 2.5 � 10�2. Here, k = 2p corresponds to a
wavelength l equal to the channel width w. The flat interface is
initially covered by contractile force dipoles with the areal

concentration of C(x) = 0.5. Note that otherwise we always
choose C(x,0) as the initial areal concentration along the
perturbed interface. Upon increasing the wavenumber, the
growth rate g rises and peaks at k/2p = 4 as shown in Fig. 5.
This is because for larger wavenumbers (or smaller wave-
lengths) the interface curvature k increases and with it the
destabilizing active force component f a

2 in eqn (14). Then, the
growth rate g declines for k/2p 4 4 as the area of the perturbed
interface increases with k. Therefore, the force-dipole concen-
tration along the perturbed interface and thus the destabilizing
force decreases. Note that the growth rate does not tend to zero
for k - 0 as expected for vanishing curvature. Instead, it
approaches zero at k/2p = l�1 E 1. We attribute this to the
nearby channel walls, which hinder the destabilizing flow to
develop fully.

Dispersion curves identify and quantify the unstable modes.
They are determined in a linear stability analysis, which we
performed here by direct numerical simulations. Now, we
observe how the most unstable mode at k/2p = 4(l = 0.25)
evolves further in time. We choose N = 131 active dipoles, which
gives a concentration C(x,0) = 0.94 at the interface, nearly twice
as large compared to the linear stability analysis. Increasing the
concentration of the force dipoles speeds up the instability and
thereby helps to reduce the computational cost. We observe
that as the instability evolves, the symmetry of the interfacial
perturbation about the channel centerline breaks because of
the viscosity contrast. Ultimately, the more viscous bottom fluid
invades the less viscous top fluid, and the fluid interface takes
the form of a finger, as shown in Fig. 6. The continued
elongation of the finger results in its breakup near the tip
and generates a droplet. We call this a droplet breakup via
active tip streaming. A similar interface dynamics has also been
observed in electrohydrodynamic (EHD) flows (see Fig. 1 of
ref. 84), commonly known as EHD tip streaming. Later, in
Section III C we will demonstrate how one can exploit the
breakup process in Fig. 6 to systematically form droplets.

Fig. 5 Growth rate g plotted versus wavenumber k in units of 2p for an
areal concentration of C(x) = 0.5 of the flat interface. The remaining
parameters are m = m1/m2 = 30, s = 0, W = 2 � 10�5, and A(0) = 2.5 � 10�2.
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Recently, Ruske and Yeomans85 reported the formation of
fingerlike protrusions in three-dimensional active nematic
droplets due to the active flow around disclination lines near
the interface. The formation of fluid fingers also occurs in
hydrodynamic instabilities such as Rayleigh–Taylor86 and
Saffman–Taylor,87 which, however, have different origins. The
Saffman–Taylor instability originates when a less viscous fluid
is continuously pumped against a more viscous stagnant fluid
in a Hele–Shaw cell. Thus, it exhibits fingers that consist of a
less viscous fluid, opposite of that in Fig. 6 for the present
instability. This distinction arises because curved regions of
the active interface penetrate the less viscous top fluid with
relative ease than the more viscous bottom fluid. Moreover,
unlike the Saffman–Taylor instability, the activity-driven
instability prevails in the absence of viscosity contrast (m = 1)
since it is solely driven by the interface curvature k, as pre-
viously discussed. The presence of the viscosity contrast in our
two-fluid setup enables us to realize the asymmetric interface
height profile about the channel centerline, which lets us
systematically deposit droplets in the top fluid, as described
later in Section III C.

We further studied the influence of the viscosity ratio m
on the breakup dynamics. On increasing the viscosity ratio by
decreasing the viscosity of the top fluid, the bottom fluid dis-
places the top fluid more easily. Hence, the instability develops
faster as demonstrated in Fig. 7(a). This, in turn, speeds up the
breakup of the finger. However, we also observe that the size
of the emitted droplet is slightly smaller [compare insets of
Fig. 7(a)]. To quantify the influence of the viscosity ratio m on
the growth rate, we first rescale time by m�1, which results in a
master curve for the amplitudes A(t) at early times [see inset of
Fig. 7(b)]. This is expected for the linear regime of the interface
dynamics. Deviations occur at later times in the nonlinear
regime when approaching the breakup point. On introducing
a weakly nonlinear scaling, t p m�1.25, we obtain a master

curve with a good agreement near the breakup point [see main
plot of Fig. 7(b)]. At early times, we see a slight deviation from
the master curve for m = 30.

Next, we investigate how the activity-driven interfacial
instability progresses after the first breakup. We consider a
relatively thin layer of the bottom fluid with thickness h = 0.1.
This allows sufficient room for the interface to penetrate the
top fluid at later times. Furthermore, we set the viscosity ratio
to m = 100 where the instability grows fastest [see Fig. 7(a)]. The
other simulation parameters are kept the same. Snapshots
from a long enough simulation run in Fig. 8(a)–(g) reveal the
formation of droplets through multiple breakup events. The
time variation of the perturbation amplitude A(t) in Fig. 8(h)
(main plot) shows that these breakup events are not regular,
i.e., the time elapsed between two successive breakups is
not unique. The second breakup in Fig. 8(b) follows quickly

Fig. 6 Evolution of an interfacial perturbation of wavelength l = 0.25 into
a viscous finger and its breakup for the viscosity ratio m = m1/m2 = 30. The
streamlines show the flow induced by the activity at the interface, which
generates the finger. The remaining parameters are C(x,0) = 0.94(N = 131),
W = 2 � 10�5, and s = 0.

Fig. 7 (a) Amplitude of the interfacial perturbation plotted versus time t
for different viscosity ratios m. The remaining parameters are l = 0.25,
C(x,0) = 0.94(N = 131), W = 2 � 10�5, and s = 0. Insets: Interface after
breakup for the viscosity ratios of m = m1/m2 = 30 (left) and 100 (right). (b)
Master curves for the time evolution of the amplitudes obtained
by rescaling time by m�1.25 (main plot) or by m�1 (inset).
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after the first [see Fig. 8(h)]. After the second breakup, the
perturbation amplitude continues to grow and the interface
pushes the separated pair of droplets further up. Eventually, the

fluid interface regains a height similar to that during the first
breakup [compare Fig. 8(a) and (c)]. Then a third droplet forms,
merges with the preceding droplet, and bow-tie-shaped viscous
ligaments form, which ultimately form a fluid chain by merging
together [see Fig. 8(d)–(f)]. However, the newly formed fluid
chain is unstable and disintegrates into a train of droplets
[see Fig. 8(g)]. We add two comments. For the present case,
where we implemented a thin bottom film, the first breakup
occurs faster than with a thick bottom layer for the viscosity
ratio of m = 30 [compare the case of m = 30 in the inset of
Fig. 8(h) with Fig. 7(a)]. We attribute this to the presence of the
channel wall. For the higher viscosity ratio of m = 100, the
speedup in the breakup is very marginal.

B. Influence of interfacial tension on the activity-induced
instability

So far we set the surface tension s of the interface to zero. For
s a 0, perturbing a plane interface, enhances its area and
thereby its surface energy. So the non-zero surface tension
always tries to damp the perturbation. Thus, for a fluid inter-
face covered with contractile force dipoles (W 4 0), surface
tension and active body forces compete against each other and
we expect that below a critical value s* the interface becomes
unstable.

To determine s*, we recall that the relevant part of the
surface-tension body force Fs in eqn (13) is

Fs � �3
2
sxkjrfj2n ’ �skjrfjn: (15)

To arrive at the expression on the right, we used that only the
integral of Fs over the interface profile is important and that for
the equilibrium profile of eqn (9) we haveð1

�1

3

2
xjrfj2dz ¼

ð1
�1
jrfjdz ¼ 1: (16)

Using the dominating curvature contribution f a
2n = WCk|rf|n

for the active body force from eqn (14), where ds = |rf|, we can
immediately state that the fluid interface is unstable for

Fig. 8 (a)–(g) Activity-assisted generation of viscous droplets via the
breakup of a relatively thin (bottom) fluid layer of thickness h = 0.1 and
viscosity ratio m = m1/m2 = 100. (h) Time evolution of the interfacial
perturbation A(t) with the marked breakup and merger events for m =
100 (main plot) and m = 30 (inset). The remaining parameters are l = 0.25,
C(x,0) = 0.94(N = 131), W = 2 � 10�5, and s = 0.

Fig. 9 (a) Amplitude of an interfacial perturbation A(t) plotted versus time t for three values of surface tension s (below, equal to, and above WC(x,0))
and a viscosity ratio m = m1/m2 = 30. (b) Amplitude A(t) at later times for s = 1.09 � 10�5 o WC(x,0) and m = {30,100}. (c) Growth rate g plotted versus s
for m = 30. Insets: Steady-state shape of the fluid interface for (a) s = 1.8752 � 10�5 = WC and (b) m = 30. The remaining parameters are l = 0.25,
C(x,0) = 0.94(N = 131), and W = 2 � 10�5.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
1/

28
/2

02
4 

10
:4

3:
07

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D3SM00043E


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 2241–2253 |  2249

s o s* = WC. To verify the expression for s* we conduct three
different simulation runs with s o¼4 WCðx; 0Þ. Furthermore, we
set the perturbation wavelength and viscosity ratio to l = 0.25
and m = 30, respectively.

The outcome of the direct numerical simulations is illu-
strated in Fig. 9(a), where we show the time evolution of the
perturbation amplitude. Indeed, for an interface with strong
enough surface tension (s 4 WC), the perturbation dies out,
while for s o WC we observe the interfacial instability.
As predicted, on setting s = WC(x,0), the initial interfacial
perturbation remains static, as illustrated in the inset of
Fig. 9(a). Now, studying the instability for s o WC(x,0) for a
longer duration, we find that the amplitude of the interfacial
perturbation eventually reaches a plateau [see the main plot
and inset in Fig. 9(b)]. Similarly, for a higher viscosity ratio of
m = 100, the instability also comes to a halt after an even
shorter period. The reason for reaching a statically deformed
interface is because the area of the growing interface increases
and thus the areal concentration C(x,t) continuously drops.
Ultimately, when s = WC(x,teq) is reached at time teq, the motion
of the fluid interface is arrested. We also note that the steady-state
amplitude of the perturbation is a bit higher for m = 100
compared to m = 30 because the viscous finger is slightly more
pointed. Fig. 9(c) summarizes the instability controlled by the
surface tension. Below s* the growth rate of the interfacial
perturbation is positive, while the perturbation is damped
for s 4 s*. The qualitative nature of the dispersion curve in
Fig. 5 also holds for unstable active interfaces with non-zero
surface tension (WC 4 s) since the stabilizing surface tension
force Fs and the destabilizing active force f a

2n have the same
mathematical form.

Formally, one can interpret contractile force dipoles (W 4 0)
as imparting a negative surface tension �WC to the fluid
interface and vice versa for extensile force dipoles (W o 0).
Then, for contractile force dipoles the instability is triggered
when the total surface tension becomes negative. This is
reminiscent of the effectively negative surface tension, which

is induced by the overpopulation of surfactants at the fluid
interface as reported in ref. 88.

C. Controlling droplet production using particles with
switchable activity

Till now, we discussed two cases with contractile force dipoles:
the breakup of droplets from a fluid interface at zero surface
tension and the stabilizing property of the surface tension.
Here, we demonstrate that by varying the destabilizing activity
at the fluid interface, one can control the formation of micro-
fluidic droplets. Such droplets can be utilized in various
practical applications, e.g., as chemical reactors on lab-on-a-
chip platforms.89

We select the parameter combination {l, m, W, N} = {0.25,
30, 2 � 10�5, 131} and two values of interfacial tension s = 10�8

and 10�6. Since both values always satisfy s o WC, the inter-
facial perturbation grows with time and a droplet breaks up
from the fluid interface, as shown in Fig. 10(a). Once the
breakup is detected in our simulation, we switch off the activity
by setting W = 0. As a result, the viscous finger retracts due to
the stabilizing surface-tension force and leaves the droplet
behind in the top fluid layer [see snapshots of fluid interface
at different time instances in the insets of Fig. 10(a)]. Hence,
one droplet-generation cycle consists of forming a viscous
finger, the breakup of a droplet, and the damping of the
interfacial perturbation due to surface tension once the activity
is switched off. Increasing the surface tension from s = 10�8

to 10�6 does not significantly impact the finger formation.
However, it dramatically speeds up the retraction of the inter-
face [see Fig. 10(a)]. The idea of switching off activity is inspired
by light-switchable active particles90 and surfactants,25,91 which
are used in practice. In theory, one can realize the continuous
formation of droplets by periodically switching on and off
the activity. However, after each droplet-formation cycle, the
strength of activity at the main interface will weaken because of
the gradual reduction in the areal concentration C since the
droplets carry away active particles.

Fig. 10 Droplet generation cycle consisting of an activity-driven growth of the interfacial perturbation and droplet breakup, followed by a retraction of
the viscous finger when activity is switched off immediately after breakup. Effect of (a) surface tension s, (b) viscosity contrast m = m1/m2, and (c) a larger
wavelength l = 0.5. The relevant parameters are indicated in the plots. Insets: Snapshots of interface configurations as indicated by the pink bullets for
(a1)–(a3) s = 10�6, (b1)–(c2) m = 100, and (c1) m = 30. The remaining parameters are N = 131, and W = 2 � 10�5.
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The generation of a droplet speeds up considerably for the
higher viscosity ratio of m = 100, as shown in Fig. 10(b).
Furthermore, upon increasing the perturbation wavelength to
l = 0.5 in Fig. 10(c), we observe droplet formation for m = 100
but not for m = 30. In the latter case, a long finger with a broad
basis and a thin tip develops, but the breakup of a droplet is
hindered by the upper wall as the inset of Fig. 10(c) shows.
Interestingly, we find that the droplet radius Rd remains nearly
unchanged irrespective of the studied perturbation wavelength
l and viscosity ratio m. For the different combinations we find
{l, m, Rd} = {0.25, 30, 0.037}, {0.25, 100, 0.031}, and {0.5, 100,
0.039}.

IV. Concluding remarks

Designs of microfluidic lab-on-a-chip devices have continu-
ously evolved to meet practical requirements as well as to
increase robustness and efficiency. In contrast to mainstream
design ideas, we proposed a fairly novel approach that relies
on active matter to generate microfluidic flows in a multi-
component setting. Our microfluidic setup consists of an active
fluid interface separating two fluids of different viscosities. The
activity is due to interfacial particles that exert dipolar forces on
the two fluids close to the interface. In our numerical study, we
use lattice-Boltzmann simulations to determine fluid flow,
which is coupled to a phase field equation for the dynamics
of the interface. In addition, an advection–diffusion equation
governs the active-particle density at the curved interface.

Our direct numerical simulations uncovered that flat fluid
interfaces laden with contractile force dipoles can become
unstable, while extensile force dipoles never destabilize the
interface. The instability is driven by the interface curvature,
which creates an imbalance between the densities of the two
dipolar force components at the interface. For zero surface
tension of the interface, a viscous finger develops which breaks
up into multiple droplets. For non-zero surface tension, a
sufficiently large active-force density is needed to destabilize
the flat interface (WC 4 s). Since the active-force density
decreases for a deformed interface, a static deformation can
develop. For sufficiently large active forces, a droplet breakup
occurs. Using switchable activity, we show how one can control
droplet formation.

To realize the activity-driven droplet formation, one needs to
fulfill WC 4 s. Typical values for the surface tension of the
fluid interface are close to s = 10�4 N m�1.92 To estimate the
force-dipole strength, we follow ref. 93 and take W B mUls

2,
where ls is the length of the active particle and U its swimming
speed. A good estimate for the concentration is C B g2/ls

2,
where g refers to the aspect ratio of the active particle, and one
finds WC B g2mU. For larger rodlike microswimmers such as
Bacillus subtilis with U = 100 mm s�1 and g = 10,33 and a more
viscous fluid such as silicone oil with m = 10�2 kg ms�1,94 one
obtains indeed WC B s. Another strategy to fulfill WC 4 s is to
use fluid interfaces with an ultra-low surface tension such as
s = 10�6 N m�1 reported in ref. 95. This allows to reduce the size

of the active particles and the viscosity. Finally, the fluid inter-
face is also unstable under Poiseuille flow,13 which can help to
induce the droplet formation.

Microfluidic lab-on-a-chip systems often take advantage of
the inherent nonlinearities of viscoelastic flows to systemati-
cally steer17 and encapsulate96 particles. Likewise, incorporating
viscoelastic fluids in the proposed active microfluidic setup may
extend the utility of the current design. For example, characterizing
the response of the active interface in the presence of a neighboring
viscoelastic fluid can open up a new way to implicitly determine the
rheological properties of viscoelastic fluids in practice. There
already exists microfluidic rheometers, which employ the cross-
stream particle migration in viscoelastic channel flows97 and
stagnation point flows in cross-slot geometries98 to assess the
elasticity of viscoelastic fluids. Devising such microfluidic
rheometers is one of the topical microfluidic applications with
immense practical value.

The present work on active fluid interfaces provides theore-
tical insights into how to combine microfluidics and active
matter. More importantly, our results on the activity-driven
formation of droplets are convincing enough that active-matter
microfluidics is a promising concept for multi-component
flows on the micron scale. Bringing these theoretical ideas to
life will have far-reaching consequences due to their utility in
lab-on-a-chip applications. For example, having solute particles
in the more viscous fluid, one can controllably encapsulate
them into droplets. Active-matter microfluidics is still an
emerging field. We hope our work will motivate experiments
that explore the potential of combining multi-component
microfluidics with active matter.
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Appendix A: Validation of the interfacial
advection–diffusion solver

The benchmarking of our finite difference implementation
for the interfacial advection–diffusion equation [eqn (6)] is
carried out using two different test cases proposed by Teigen
et al.82 In the first test case, we consider a static interface in
the absence of the background flow to check the correctness
of the numerical implementation of the diffusion term
in eqn (6). For the second test case, we set the diffusivity D
to zero and impose a predefined flow field to verify the
advection-driven transport of active particles. Moreover, in
the second test case, the interface location is known analyti-
cally at all times. Thus we do not need to solve the phase field
equation. The time step is set to Dt = 10�4 in both test cases.
The outcome of our test cases is compared with the analytical
solution proposed by Teigen et al.82 As plotted in Fig. 11,
excellent agreement is found between the analytical and
present numerical results.
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