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try simulation of ground- and
excited-state properties of the sulfonium cation on
a superconducting quantum processor

Mario Motta, *a Gavin O. Jones, a Julia E. Rice,a Tanvi P. Gujarati,a Rei Sakuma,b

Ieva Liepuoniute,a Jeannette M. Garciaa and Yu-ya Ohnishi b

The computational description of correlated electronic structure, and particularly of excited states ofmany-

electron systems, is an anticipated application for quantum devices. An important ramification is to

determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-

sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we

simulate the static and dynamical electronic structure of the H3S
+ molecule, taken as a minimal model of

a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture.

To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins

et al., Phys. Rev. X Quantum, 2022, 3, 010309], currently restricted to the evaluation of ground-state

energies, to the treatment of molecular properties. While in a conventional quantum simulation a qubit

represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required

qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al., Phys.

Rev. X, 2018, 8, 011021], a technique used to project the time-independent Schrodinger equation for

ground- and excited-states in a subspace. To enable experimental demonstration of this algorithmic

workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors

and partial atomic charges along ground- and excited-state potential energy curves, revealing the

occurrence of homo- and heterolytic fragmentation. This study is an important step towards the

computational description of photo-dissociation on near-term quantum devices, as it can be generalized

to other photodissociation processes and naturally extended in different ways to achieve more realistic

simulations.
1 Introduction

Solving the Schrödinger equation for ground- and excited-states
of many-electron quantum systems is one of the grand chal-
lenges of contemporary science.1,2 In particular, the accurate
computation of excited-state properties by numerical simula-
tions stands to impact many problems in pure and applied
quantum chemistry, exemplied by photochemical processes
that result from absorption of photons and promotion of elec-
trons to excited states.

The semiconductor industry has employed these processes
to use photolithographic materials in solid-state chip fabrica-
tion.3,4 Fundamentally, fabrication involves coating a silicon
wafer with a thin lm of a precisely engineered block co-
polymer with different functional side chains on blocks that
50 Harry Road, San Jose 95120, CA, USA.

.ibm.com; jmgarcia@us.ibm.com

logy & Digital Transformation Center, JSR

ki-ku, Kawasaki, 210-0821, Kanagawa,

the Royal Society of Chemistry
self-assemble into lamellae when processed. In this example,
blocks have distinct reaction proles, and some engineered
systems include acid-sensitive side chains that, when reacted,
change the block solubility coefficient. A photo-acid generator
(PAG) can be embedded in the polymer lm and photochemi-
cally reacts at specic wavelengths of light to release a free
proton in the solid-state that can subsequently react with acid-
sensitive side chains.5–8 Patterns form with the use of a mask
that blocks or exposes different parts of the lm to ultraviolet
(UV) light, modifying the solubility of the polymer such that it
can be selectively washed away from the wafer in aqueous
solvents. One such effective industrial PAG contains the tri-
phenylsulfonium (Ph3S

+) cation.9–14

The computational description of these photochemical
processes poses a number of challenges, for example: charac-
terizing the light–matter interaction to determine transitions to
electronic (and, in general, vibronic) excited states; and, in
photo-dissociation reactions, assessing the electronic structure
of excited states to determine the nature of the dissociation
path (e.g. homolytic15–17 or heterolytic18). In addition, qualita-
tively correct and quantitatively accurate calculations require
Chem. Sci., 2023, 14, 2915–2927 | 2915
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incorporating solvation and thermal effects, and reliably
assessing the electronic structure of the studied species by
accounting for static and dynamical correlations in realistic
basis sets. Capturing such effects accurately is essential for
understanding molecular properties, for predictive computa-
tions, and ultimately for introducing new PAGs, because the
current semiconductor process requires molecular-size order
controlling.

Over the last decades, research in computational many-
electron quantum mechanics has generated algorithms for
conventional classical computers that yield approximate,
though oen very accurate, estimates of ground- and excited-
state molecular properties at polynomial cost.19–22

Digital quantum computers are an alternative and comple-
mentary framework to simulate many-body quantum
systems.23–26 Assuming high-quality qubits in a sufficiently large
number, they allow simulation of the time-dependent Schrö-
dinger equation at polynomial cost introducing controllable
approximations only,27,28 thus being capable of accessing a vast
class of excited-state properties. Recent advances in hardware
manufacturing has produced quantum computers that can
carry out computations on a limited scale. Despite the rapid
development of quantum hardware, modern quantum compu-
tation platforms are immature. As a consequence, simulations
of excited states on near-term devices are typically restricted to
heuristic quantum subspace algorithms,29–35 that yield approx-
imations to excited-state wavefunctions and properties within
the budget of these devices by projecting the Schrödinger
equation onto a suitably constructed subspace. It is therefore
a real possibility, and of central importance at this time, to
assess the potential usefulness of near-term quantum devices
on problems of conceptual and practical interest, e.g. the
computation of molecular excited states.

Here, we report the development of a heuristic methodology
that leverages structured entanglement in many-electron
wavefunctions to calculate ground- and excited-state molec-
ular properties, and its experimental demonstration on
a superconducting quantum processor. More specically, we
generalize a qubit reduction technique called entanglement
forging (EF),36 initially proposed for variational simulations of
ground-state energies, to the computation of generic many-
body observables. While in a conventional quantum simula-
tion a qubit represents a spin-orbital, within EF a qubit repre-
sents a spatial orbital, reducing the number of required qubits
by half.

To improve the accuracy of this technique, and to approxi-
mate excited-state energies and properties, we combine EF with
quantum subspace expansion (QSE), an example of a heuristic
quantum subspace algorithm29,35,37 which, in its simplest form,
projects the Schrödinger equation onto a subspace spanned by
single and double excitations on top of a reference wave-
function. The proposed methodology extends the applicability
of EF, allowing the computation of a signicant set of observ-
ables, and that of QSE, facilitating its demonstration on
contemporary quantum hardware due to the qubit reduction
operated by EF.
2916 | Chem. Sci., 2023, 14, 2915–2927
We apply the proposed technique, in combination with
multiple error mitigation methods, to investigate the gas-phase
photo-dissociation of H3S

+, taken as the simplest molecular
model for Ph3S

+. Common to both compounds is the presence
of a triply-bonded sulfur cation. The most accurate description
of the computational model for Ph3S

+ requires the inclusion of
the p-conjugated phenyl groups, which determines the energy
and character of its excited states, but this feature corresponds
to a higher computational cost which makes H3S

+ a more suit-
able target for simulations on contemporary quantum
hardware.

We assess the interaction between H3S
+ and UV light within

the electric dipole approximation in response theory, and
characterize dissociation paths as homo- or heterolytic by
computing partial atomic charges and other properties of the
excited-states. Our study contains approximations and limita-
tions, that we endeavor to document. Notwithstanding these
limitations, it illustrates that near-term quantum hardware can
be effectively used to explore ground- and excited-states of
molecules by means of active-space calculations. While active
spaces treated in our study are still small, the underlying
methodology naturally extends to larger active spaces.
Furthermore, our algorithm is amenable to multiple algo-
rithmic improvements and extensions (for example to treat
dynamical correlation, solvation effects, and larger chemical
systems), that draw a path towards larger and more realistic
simulations.

2 Methods

Several authors have shown that the absorption cross-section of
electromagnetic radiation by a molecular system can very
generally be represented as a Fourier integral.38–41

Let Ĥ be the unperturbed time-independent molecular
Hamiltonian, with eigenstates ĤjFAi = 3AjFAi. If the system,
initially at equilibrium at zero temperature, interacts weakly
with an external electric eld of frequency u, transitions from
the ground state into other quantum states jFAi occur if the
frequency of the radiation is close to D3A0 = 3A − 30. Assuming
a eld with wavelength much larger than molecular dimen-
sions, the perturbation can be written as V̂ (t)=−m̂$Ê(t), where m̂
is the dipole moment operator. According to time-dependent
quantum-mechanical perturbation theory, to rst order in the
perturbation, the rate of transition from the ground state to any
excited state is given by Fermi's golden rule42–48 and is propor-
tional to the dipole dynamical structure factor (DSF),

SðuÞ ¼
ð
dt

2p
eiuthF0jbmðtÞ$bmjF0i ¼

X
A

mA0dðu� D3A0Þ; (1)

where mA0 = jhFAjm̂jF0ij2 is the transition dipole between
Hamiltonian eigenstates F0 and FA. Combined with the exci-
tation energy D3A0, it permits evaluation of the oscillator
strength mA0D3A0, which in turn species the absorption cross
section of electromagnetic radiation.45–48 It should be noted that
the scalar character of the DSF is due to the assumption of an
isotropic system, for which any response is independent from
the polarization vector of the incident radiation. Furthermore,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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while an appropriate description of photo-dissociation requires
a joint quantum mechanical treatment of electrons and
nuclei,42,43 particularly near conical intersections, here, con-
cerned with valence-electron UV/vis spectroscopy, we focus on
vertical electronic transitions.

DSFs of the form shown in eqn (1) are natural targets for
quantum computers, where the time-dependent dipole corre-
lation function f(t) = hF0jm̂(t)$m̂jF0i can be computed by simu-
lating Hamiltonian time evolution.26 Note that f(t) needs to be
computed over a sufficiently long time interval to allow for
accurate reconstruction of its Fourier transform, time evolution
needs to be controllably approximated e.g. with product
formulae, and computation of correlation functions involves
deep quantum circuits comprising the Hadamard test or mid-
circuit measurements.49 Approximate ground- and excited
states can also be computed by means of quantum diagonal-
ization algorithms. These heuristic methods may require shal-
lower quantum circuits, making them compatible with near-
term quantum computers. Furthermore, they enable evalua-
tion of eqn (1) directly in the frequency domain; for example,
they allow to evaluate the right member of eqn (1) by summing
over the set of computed excited states without computing time-
dependent correlation functions. Access to excited-state wave-
functions also allows computing densities

rAðxÞ ¼ hFAj
P
s

ĉ†sðxÞĉsðxÞjFAi, where the operator ĉ†s(x)/ĉs(x)

creates or destroys an electron with spin s at position x. From
these, one can extract partial atomic charges, which in turn
allow characterization of the dissociation of a single SH bond as
a homolytic (H3S

+/H2S
+ + H) or heterolytic (H3S

+/H2S + H
+)

process, as illustrated in Fig. 1.

2.1 Algorithm

In this Section, we describe the algorithms used in the present
work. Additional methodological details are provided in
Appendix A–C.

2.1.1 Classical preprocessing. The starting point of this
study is the denition of a Hamiltonian operator Ĥ. To eluci-
date the electronic structure of H3S

+ along cleavage of a single
SH bond, we performed a set of constrained geometry optimi-
zations on a classical computer and, for each geometry,
Fig. 1 Molecular fragmentation paths. In the homolytic cleavage of
a single SH bond of H3S

+, the two electrons in the bond are divided
equally between H2S and H, leading to the formation of two radicals
(top, marked by black circles). In the heterolytic cleavage, the two
electrons are taken by one part of the bond, with formation of closed-
shell products H2S and H+.

© 2023 The Author(s). Published by the Royal Society of Chemistry
projected the electronic Hamiltonian onto an active space of 6
spatial electrons corresponding to sulfur 3p and hydrogen 1 s.
Although the active-space approximation biases the electronic
structure of H3S

+, it offers the possibility to benchmark the
performance of heuristic quantum algorithms and near-term
quantum hardware, while establishing a foundation for
scaling to more complex quantum simulations. Additional
details are provided in Appendix A.

2.1.2 Ground-state calculations. Having dened a Hamil-
tonian, we start the search for excited states with a preliminary
ground-state calculation. To this end, we resort to the EF tech-
nique,36,50,51 based on the idea of partitioning a register of qubits
in two halves, and representing the target wavefunction as

jJqi ¼
P
k
lkÛðqÞjxki5ÛðqÞjxki, where Û(q) is a parameterized

unitary, lk are a set of coefficients, and jxki are a set of
computational basis states. Observables are written as linear

combinations of tensor products Â5B̂, and their expectation
values are expressed (see Appendix B for a derivation) as

hJqjÂ5B̂jJqi ¼
X
kl

lkllAklBkl ; (2)

where Xkl ¼ hxkjÛ†ðqÞX̂ÛðqÞjxli is evaluated as

Xkl ¼
X3
p¼0

ð�iÞp
4

hfkl
pjX̂ jfkl

pi; jfkl
pi ¼ jxki þ ipjxliffiffiffi

2
p : (3)

Within EF, one prepares the states jfp
kli on a quantum

processor, measures the matrix elements Xkl for X̂ = Â,B̂ and the
expectation values in eqn (2). In this formalism, a qubit repre-
sents a spatial orbital rather than a spin-orbital, and thus the
number of qubits required for a simulation is reduced by half.

The unitary Û(q) and states jxki are Ansätze, and parameters
q are optimized variationally along with coefficients lk. Here, we
choose xk ˛ {j111000i, j110100i} to highlight entanglement
across frontier active-space orbitals, and Û(q) as a product of 6
“hop-gates” (i.e. number-conserving functionally complete 2-
qubit gates). The circuits executed in this work are shown in
Fig. 2a–e, and additional details are in Appendix B.

2.1.3 Excited-state calculations. To access excited states, we
extend EF to encompass the framework of quantum diagonal-
ization algorithms, exemplied by QSE.29 Within QSE, a set of
excitation operators {Êm}m are chosen, Hamiltonian and metric
matrices are constructed as Hmn = hJqjÊ†mĤÊnjJqi and Mmn =

hJqjÊ†mÊnjJqi respectively, and Hamiltonian eigenstates are

approximated as jFAi ¼
P
n

cnAÊnjJqi, where the columns of c are

solutions of the eigenvalue equation HcA = McA3A. Here, we
employ as excitation operators single- and double-electronic
excitations, as this choice is natural for electronic systems
and compatible with the representation of QSE matrices by eqn
(3).

2.1.4 Evaluation of observables. The workow outlined
here allows access to ground-, excited-state, and transition
matrix elements of a vast class of operators. Along with the
Hamiltonian, we compute the electron number and total spin
operators, respectively N̂ and Ŝ2, two important constants of
Chem. Sci., 2023, 14, 2915–2927 | 2917
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Fig. 2 Qubit layout and quantum circuits. (a) Active-space orbitals of H3S
+ at equilibrium geometry, obtained from amean-field simulation of the

Born–Oppenheimer Hamiltonian, and mapped onto qubits as illustrated. (b) The circuit diagram depicts an entanglement forging Ansatz,
comprising an initial state preparation (light red box) followed by 3 layers of parametrized 2-qubit hop-gates in a brickwall pattern (light blue box)
and a final measurement (light orange meter symbols). (c) the red box marked V in panel (b) completes the initialization of 6 qubits in
a computational basis state xk ˛ {j111000i, j110100i} (top, middle circuits marked x0, x1 respectively) or in a superposition state jfp

01i = (jx0i +
ipjx1i)/2 (bottom circuit marked fp

01, where a= Pp/2R = 0, 0, 1, 1 and b = p%2 = 0, 1, 0, 1 for p= 0, 1, 2, 3 respectively). (d) compilation of a 2-qubit
hop-gate into single-qubit and cX gates. (e) depiction of the final measurement operations. (f) depiction of two 6-qubit lines on sub-grids of the
ibm_kolkata device. Each circuit involves up to 19 cX gates, 42 single-qubit gates, and 8 variational parameters, and only requires gates between
pairs of qubits adjacent in a linear topology.
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motion used to label excited states and classify transitions, and

the density matrices (RDMs) rpr
AB ¼ hFAj

P
s

ĉ†psĉrsjFBi. Transi-
tion RDMs rA0 provide access to the dipole DSF eqn (1), whereas
ground- and excited-state RDMs (respectively r00 and rAA)
provide access to partial atomic charges.

2.2 Hardware experiments

Simulations were run on IBM's 27-qubit processor ibm_kolkata
based on the Falcon architecture, as shown in Fig. 2f. Segments
of best-performing qubits were selected monitoring average
readout and cX errors, and IBM's Qiskit and runtime libraries
Fig. 3 Ground-state energies and partial atomic charges during bond cl
computed and FCI total energy (c and d) from EF (a and c) and QSE with
(green lines, orange symbols for statevector and qasm) and quantum h
mitigation. (Right) Computed atomic charges on S (e and f) and the depart
and h). Charges are computed with a Mulliken population analysis ba
remaining H atoms are equal to each other, and to (1 − qS − qH)/2.

2918 | Chem. Sci., 2023, 14, 2915–2927
were used to interface with quantum hardware.52 Along with
hardware simulations, we performed noiseless and noisy
simulations of quantum circuits using the statevector and qasm
simulators of Qiskit, and exact diagonalization (full congura-
tion interaction of FCI) calculations using PySCF.53,54 To reduce
decoherence effects and systematic errors occurring on
quantum hardware, we resorted to a combination of error
mitigation techniques, detailed below and further discussed in
Appendix C.

2.2.1 Readout error mitigation. In general, measurement
errors over n qubits satisfy the relation Apideal = pnoisy where
pnoisy and pideal are vectors of probabilities (the former is
eavage. (Left) Computed total energy (a and b) and deviation between
single and double excitations on top of EF (b and d) using simulators
ardware (ibm_kolkata, red symbols). em is an abbreviations for error
ing H (g and h) as a function of bond-length from EF (e and g) andQSE (f
sed on meta-Lowdin atomic orbitals. Partial atomic charges on the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Dipole spectral functions. Spectral function of the dipole
operator from FCI (blue), statevector (green), qasm with noise model
and error mitigation (orange) and hardware (ibm_kolkata, red) at the
representative bond-lengths R= 0.757, 1.357, 2.057 and 3.957 Å (left to
right). Spectral peaks are plotted with a broadening of 0.2 mHa (5 meV)
for FCI and statevector, and a broadening reflecting the uncertainty on
the excitation energy for qasm and ibm_kolkata.
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returned by the noisy quantum system and the latter contains
probabilities in the absence of measurement errors) and A is
a 2n × 2n complete assignment matrix. To mitigate readout
errors in such scenario, one needs to execute 2n circuits to
measure pnoisy and compute A, and solve a square system of 2n

linear equations to compute pideal.55 However, it is oen the
case that errors on multiple qubits can be well approximated
using at most OðnÞ calibration circuits.56 This result holds
when: A can be approximated as a tensor product of nmatrices
of shape 2 × 2 (tensored Ansatz); A is diagonally-dominated,
allowing efficient matrix-free solution of the linear system;
pnoisy is well-approximated by a vector with sparsity at most
OðnsÞ, where ns is the number of accumulated statistical
samples (or shots).

2.2.2 Post-selection. Since the states jfp
kli have 3 electrons,

only outcomes of a computational basis measurement corre-
sponding to binary strings with Hamming weight 3 are
retained.57 Furthermore, jfp

kli is real-valued for p= 0, 2 and thus
expectation values of purely-imaginary Pauli operators on such
states vanish.

2.2.3 Clifford-based gate error mitigation. For particular
parameter congurations, e.g. q* = 0, the circuits in Fig. 2b–e
are in the Clifford group. The expectation value of a linear
combination of Pauli operators over such a circuit can be
computed exactly at polynomial cost on a classical computer58

and measured on a device, offering a pool of data from which to
learn the effect of decoherence on measurement outcomes, and
mitigate errors.59 We use such data to perform an add and
subtract correction, i.e. to compute

Xideal(q) x Xhw(q) + Xideal(q*) − Xhw(q*). (4)

2.2.4 Purication. Any n-qubit density operator can be
written as
© 2023 The Author(s). Published by the Royal Society of Chemistry
(5)

where the Bloch vector~a is dened so that r̂ = r̂† and Tr[r̂] = 1,
and must be compatible with the condition r̂$ 0. In particular,
since the purity Tr[r̂2] of a density operator lies60 in the interval
[2−n, 1], and Tr[r̂2] = 2−n(1 + k~ak2), then k~ak2 must lie in the
interval [0, 2n − 1]. Due to decoherence and artifacts of error
mitigation, we may observe Tr[r̂2] ; [2−n,1] despite the target
state being pure. When that happens, we scale the Bloch vector
so that Tr[r̂2] = 1. In the remainder of this work raw, readout-
error mitigated (only technique a), and fully error-mitigated
results (all of the four mitigation techniques in subsections
2.2.1 to 2.2.4) will be labeled raw, roem, and em respectively.

3 Results
3.1 Ground-state simulations

Fig. 3 shows simulation results for the ground state of H3S
+.

Variational EF simulations (panels a and c) are on average ∼40
mEh above FCI, with a non-parallelity error (dened as npe =

maxRjDE(R) − hDE(R)ij with DE(R) = E(R) − EFCI(R)) of 10.2, 11 ±

3, 20 ± 3 mEh and a binding energy (dened as E(Rmax) −
minRE(R) of 163, 164± 4, 162± 4 mEh for statevector, qasm and
ibm_kolkata respectively. It should be noted that binding
energies are challenging to evaluate on quantum hardware, due
to a non-smooth potential energy curve for large R. The
combined use of EF and QSE (panels b and d) signicantly
improves the agreement between variational and FCI energies,
and decreases non-parallelity errors to 0.4, 2± 6, 6± 13 mEh for
statevector, qasm and ibm_kolkata respectively. Binding ener-
gies decrease slightly, respectively to 159.0, 163 ± 4, 156 ± 5
mEh.

Fig. 3 also shows ground-state partial atomic charges.
Hartree-Fock (SCF) incorrectly predicts (panels g and h) the
charge qH on the departing hydrogen to remain nite as R
diverges, i.e. a heterolytic ground-state dissociation path. All
other methods predict qH to vanish as R diverges, i.e. a homo-
lytic ground-state dissociation path. These observations are in
line with the difference between experimental61 gas-phase
ionization potentials of H2S and H being (10.5–13.6) eV =

−3.1 eV†.
EF inaccurately approximates the electronic structure of the

H2S
+ moiety, leading to discrepancies between computed and

exact values of qS (panel e). QSE improves agreement of qS with
FCI, but quantitatively signicant differences remain (∼0.1 a.u.,
panel f). The qualitative agreement between computed and
exact charges is primarily due to methodological approxima-
tions, with decoherence on quantum hardware introducing
additional deviations in the amount of ∼0.01 a.u. on average.

3.2 Excited-state simulations

Dipole DSFs are shown in Fig. 4. While positions and strengths
of dominant peaks are in qualitative agreement between exact
and simulated results, noisy simulations show uncertainties on
excitation energies, which translate into broadening and over-
lapping of peaks. Notwithstanding such limited precision,
Chem. Sci., 2023, 14, 2915–2927 | 2919

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D2SC06019A


Fig. 5 Excited-state energies and partial atomic charges during bond cleavage. (Panels a and b) Total energies of four low-lying excited singlet
(left, panel a) and triplet (right, panel b) states from FCI (blue lines), simulators (green lines, orange symbols for statevector, qasm) and quantum
hardware (ibm_kolkata, red symbols). (Panels c and d) Computed partial atomic charges on the departing H as a function of SH bond-length for
the singlet (left, panel c) and triplet (right, panel d) excited states, from QSE with singles and doubles on top of the EF wavefunction, using FCI
(blue lines), simulators (green lines, orange symbols for statevector, qasm), and quantum hardware (ibm_kolkata, red symbols). Dark and light
colors indicate the lower- and higher-energy states in the large bond-length regime R respectively.

Table 2 Active space comparisona

Quantity CASCI(6e,6o) CASCI(8e,7o)

S1–S0 0.484 0.474
S2–S0 0.484 0.474
T1–S0 0.405 0.403
T2–S0 0.405 0.403
BE 0.164 0.157

a Binding energies (BE) and vertical singlet–singlet, singlet–triplet gaps
from CASCI(6e,6o) and CASCI(8e,7o). Gaps are computed at the
equilibrium geometry R = 1.357 Å and listed in Hartree units.
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simulations consistently indicate the absorption of ultraviolet
(UV) radiation by H3S

+. For all geometries, pronounced peaks
are present at ħux 20 eV (0.73 Eh or 0.9 nm), in the high-energy
end of UV. At R = 0.757, 1.357 Å the spectrum is supported
above 13 eV (0.48 Eh or 95 nm). As R further increases, structures
appear at lower energies, specically ħu x 4–10 eV (0.15–0.37
Eh).

To interpret the vertical electronic excitations highlighted by
dipole DSFs, in Fig. 5 we show low-lying singlet and triplet
excited states (respectively S0, S1/S4 and T1/T4 in ascending
order of energy at large bond-length). Simulations on classical
and quantum devices predict qualitatively correct curves, with
T1, S0 degenerate for large R and T2, S1 more than 100 mEh
Table 1 Singlet–singlet and singlet–triplet gapsa

Gap FCI s.v. qasm ibm_kolkata

S1–S0 0.484 0.493 0.494 � 5 0.492 � 5
S2–S0 0.484 0.501 0.502 � 6 0.499 � 6
T1–S0 0.405 0.417 0.417 � 5 0.416 � 5
T2–S0 0.405 0.428 0.429 � 5 0.426 � 6

a Vertical singlet–singlet and singlet–triplet gaps from FCI, and from
QSE with singles and doubles on top of the EF wavefunction using
statevector (abbreviated s.v.), qasm, and ibm_kolkata. Gaps are
computed at the equilibrium geometry R = 1.357 Å and listed in
Hartree units.

Table 3 Basis set comparisona

Quantity STO-6G cc-pVTZ

S1–S0 0.475 0.359
S2–S0 0.475 0.359
T1–S0 0.403 0.302
T2–S0 0.403 0.302
BE 0.156 0.178

a Binding energies (BE) and vertical singlet–singlet, singlet–triplet gaps
from CCSD and EOM-CCSD respectively, in a STO-6G and a cc-pVTZ
basis set, with 5 frozen orbitals. Gaps are computed at the
equilibrium geometry R = 1.357 Å and listed in Hartree units.

2920 | Chem. Sci., 2023, 14, 2915–2927 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Effect of error mitigation on ground-state properties. Deviation between statevector and noiseless qasm (light blue), noisy qasm (purple,
yellow and orange for raw, readout error mitigated and fully error mitigated data), quantum hardware (ibm_kolkata, dark and light red for readout
error mitigate and fully error mitigated data) values of ground-state energy (a and e), total spin (b and f), particle number (c and g), and atomic
charge on the departing hydrogen (d and h), from EF (left, panels a–d) and QSE with singles and doubles on top of the EF wavefunction (right,
panels e–h). Charges are computed with a Mulliken population analysis based on meta-Lowdin atomic orbitals. roem and em are abbreviations
for readout and full error mitigation.
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above S0 across dissociation, albeit with statistical uncertainties
of ∼5 mEh for noisy simulations.

Vertical singlet–singlet and singlet–triplet gaps computed
from Fig. 5 are listed in Table 1. Noiseless simulations tend to
overestimate gaps by 10 and 20 mEh respectively. Noisy classical
and hardware simulations are in line with such trends, but
feature statistical uncertainties of 5 mEh respectively. Note also
that FCI predicts S1, S2 and T1, T2 to be degenerate, but these
degeneracies are lied in QSE, even with the statevector simu-
lation, because the excitation operators are not symmetry-
adapted.

Fig. 5 also shows partial atomic charges on the departing H
as a function of R. Charges exhibit discontinuous behavior
Fig. 7 Effect of error mitigation on excited-state energies. Deviation
between statevector and noiseless qasm (light blue), noisy qasm
(purple, yellow and orange for raw, readout error mitigated and fully
error mitigated data), quantum hardware (ibm_kolkata, dark and light
red for readout error mitigate and fully error mitigated data) values of
S1–S0, T1–S0, S2–S0, T2–S0 (a, b, c, d) energy differences, from QSE
with singles and doubles on top of the EF wavefunction (right). roem
and em are abbreviations for readout and full error mitigation.

© 2023 The Author(s). Published by the Royal Society of Chemistry
around equilibrium geometry. While FCI and noiseless curves
are in agreement with each other, noisy and hardware simula-
tions signicantly deviate from FCI and noiseless values, indi-
cating the sensitivity of excited-state partial atomic charges to
nite measurement error and decoherence. Nevertheless, for
large R, all simulations agree that S1, T1 and T2 lead to homo-
lytic dissociation, whereas S2 leads to heterolytic dissociation.

Comparison between Fig. 4 and 5 indicates that absorption
of UV light at the equilibrium geometry (1.357 Å) causes tran-
sitions to low-lying singlet states S1 and S2 (indeed, the lowest-
energy peaks of S(u) are located at ħu = DES1,S0 and DES2,S0), in
turn suggesting coexistence of both homolytic and heterolytic
pathways in the gas-phase dissociation of H3S

+, described
within an active space.
4 Conclusions

In this work, we took a step towards delivering physically rele-
vant simulations on near-term quantum devices. By integrating
the EF technique for qubit reduction with quantum diagonal-
ization algorithms exemplied by QSE, we computed ground-
and excited-state wavefunctions and properties of H3S

+.
Combining these algorithmic developments with a sequence of
state-of-the-art error mitigation techniques, we experimentally
realized the proposed algorithmic workow on a super-
conducting quantum computer. Note that this is not a direct
extension of previous work, but a careful combination and
generalization of independent algorithms.

By computing dipole spectral functions and excited-state
energies and partial atomic charges, we were able to elucidate
the mechanism of dissociation of H3S

+ upon absorption of UV
light.

Our study is among the earliest simulations of excited-state
molecular spectra on a quantum processor.35,62–64 Comparison
against exact diagonalization indicates that the proposed
methodology is capable to deliver accurate results, at least for
Chem. Sci., 2023, 14, 2915–2927 | 2921
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the active space sizes currently accessible. Notwithstanding this
encouraging result, a number of challenges need to be
addressed to provide chemically meaningful results, particu-
larly in connection with the photo-acid generating properties of
Ph3S

+. This goal can be achieved by integrating additional
functionalities in the algorithmic workow considered here.

This study simulates electrons in an active space derived
from a minimal basis. While simulations of this kind provide
benchmarks and occasions to illustrate algorithmic workows,
useful quantum simulations require accounting for static and
dynamical electron correlation in realistic basis sets; on near-
term devices, this can be achieved using N-electron valence
perturbation theory or otherwise approximate techniques.65–67

Industrially relevant photodissociation processes require
describing realistic functional groups such as phenyl, which on
near-term devices can be done integrating the algorithms pre-
sented here with quasi-complete active space68,69 or fragmenta-
tion techniques.70,71 Simulations are carried out in the gas
phase, whereas photo-dissociation reactions may occur in
a solvent. Solvation effects can be accounted for using implicit
or explicit solvation models.72,73 Research into these algorithmic
extensions and improvements is underway.

Encouragingly, the algorithmic workow considered in this
work appears useful, in conjunction with near-term quantum
architectures and in combination with other algorithms, and
serves to demonstrate the usefulness of hybrid quantum-
classical simulation techniques in the continuing search for
physically relevant simulations.
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Appendices
A Additional methodological details

For brevity, the Einstein summation convention is used in most
of the equations, while vector expansions, linear combinations
of tensor products, and summation over nuclei are explicitly
described with the summation symbol.

A.1 Classical pre-processing. For each value of the
hydrogen-sulfur bond-length studied in this work, we per-
formed a constrained geometry optimization using density
2922 | Chem. Sci., 2023, 14, 2915–2927
functional theory (DFT) with B3LYP-D3 functional and a def2-
qzvpp basis set.

For each geometry, we carried out a restricted closed-shell
Hartree-Fock (RHF or SCF) calculation with the quantum
chemistry soware PySCF at STO-6G level, yielding a set of
orthonormal molecular orbitals (MOs)

��jpi ¼
P
a

Capjcai, where
jcai are atomic orbitals AOs, and a second-quantization Born–
Oppenheimer Hamiltonian of the form

Ĥ ¼ E0 þ hprĉ
†
psĉrs þ

ðprjqsÞ
2

ĉ†psĉ
†
qsĉssĉrs; (6)

where indices prqs = 1/m label MOs, s, s = [, Y label spin
polarizations. The nucleus–nucleus Coulomb interaction is
given by

E0 ¼
XNnuc

a\b

ZaZb

kRa � Rbk; (7)

where Ra and Za are the position and atomic number of nucleus
a. The coefficients

hpr ¼
ð
drj*

pðrÞ
"
� 1

2

v2

vr2
�
XNnuc

a¼1

Za

kr� Rak

#
jrðrÞ

ðprjqsÞ ¼
ð
dr1

ð
dr2

j*
pðr1Þjrðr1Þj*

qðr2Þjsðr2Þ
r12

(8)

specify the one-electron part of the Hamiltonian and the elec-
tron–electron Coulomb interaction respectively. Hartree units
are used throughout, the numbers of spin-up and spin-down
electrons and nuclei are N[, NY, and Nnuc respectively.

The Born–Oppenheimer Hamiltonian is restricted to an
active space spanned by the 6 higher-energy MOs, correspond-
ing to linear combinations of S[3p] and H[1s] orbitals. To this
end, we froze the 7 lower-energy MOs with a standard frozen-
core procedure,

E0/E0 þ 2hii þ 2ðiijjjÞ � ðijjjiÞ;
hpr/hpr þ ðprjiiÞ � ðirjpiÞ; (9)

where indices ij, pr label core and non-core orbitals
respectively.

While larger active spaces are necessary for applications of
practical interest, we elected to focus on a 6-orbital active space
because S is valence-isoelectronic with O, and S is not playing
a hypervalent role as, for example, in SO2−

4 . In Table 2 we show
the binding energy, vertical singlet–singlet, and vertical singlet–
triplet gaps of H3S

+ using CASCI(6e,6o) and CASCI(8e,7o). As
seen, results are quantitatively but not qualitatively affected by
the extension of the active space. Similarly, both CASCI calcu-
lations predict homolytic dissociation along the ground-state
potential energy curve.

Another limitation of the present study is the use of
a minimal STO-6G basis set. In Table 3 we show the binding
energy, vertical singlet–singlet, and vertical singlet–triplet gaps
of H3S

+ using classical coupled-cluster with singles and doubles
(CCSD) and equation-of-motion CCSD (EOM-CCSD) for ground-
and excited-state calculations respectively, in a minimal STO-6G
and a correlation-consistent cc-pVTZ basis. Gaps and binding
© 2023 The Author(s). Published by the Royal Society of Chemistry
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energies are signicantly affected by dynamical correlation, but
qualitative features (ordering and degeneracy of the excited
states) are preserved.

A.2 Representation of operators within EF. In this Section
of the Appendix, we discuss how to represent second-
quantization operators as qubit operators, and how to eval-
uate their expectation values within EF.

A.2.1 The Hamiltonian. In this work, we chose to partition
molecular spin-orbitals into spin-up and spin-down. A Cholesky
decomposition74–77 of the electron-repulsion integral, (prjqs) =
LgprL

g
qs, and a reordering of the creation and destruction

operators,

ĉ†psĉ
†
qsĉssĉrs ¼ ĉ†psĉrsĉ

†
qsĉss � dqrdsrĉ

†
psĉss (10)

are used to represent the Hamiltonian eqn (6) as

Ĥ ¼
�
hpr � ðpqjqrÞ

2

�
ĉ†psĉrs þ

Lpr
gLqs

g

2
ĉ†psĉrsĉ

†
qsĉss; (11)

and to separate operators acting on spin-up and spin-down
molecular spin-orbitals as

Ĥ ¼ Â[ þ ÂY þ L̂[
g
L̂Y

g
;

Âs ¼
�
hpr � ðpqjqrÞ

2

�
ĉ†psĉrs þ

ðprjqsÞ
2

ĉ†psĉrsĉ
†
qsĉss; L̂s

g ¼ Lpr
gĉ†psĉrs:

(12)

In Jordan–Wigner representation,

(13)

where Â and L̂g are the qubit representations of Â[/ÂY and L̂g[/
L̂gY restricted to the rst/last m qubits respectively.

A.2.2 Spin-summed one-body operators. A simpler formula
holds for generic one-body operators,

X̂ = xprĉ
†
psĉrs = X̂[ + X̂Y. (14)

In Jordan–Wigner representation it leaves with

(15)

where B̂ is the qubit representation of X̂[/X̂Y restricted to the
rst/last m qubits. eqn (15) holds for particle number xpr = dpr,
the spin-summed one-body density matrix, xpr = dpp0drr0 for
element (p0, r0), and the charge-gauge electronic dipole
operator,

dpr ¼
ð
drj*

pðrÞðr� r0ÞjrðrÞ; r0 ¼
P
a

ZaRaP
a

Za

: (16)

A.2.3 Total spin. The total spin operator is

Ŝ2 = Ŝ−Ŝ+ + Ŝz(Ŝz + 1) (17)

where Ŝ−= ĉ†pYĉp[, Ŝ+= Ŝ†−, and Ŝz= ĉ†p[ĉp[− ĉ†pYĉ
Y
p . For a closed-

shell wavefunction, Ŝz(Ŝz + 1) = 0, leaving

Ŝ2 = ĉ
†
pYĉp[ĉ

†
q[ĉqY = N̂Y − ĉ†p[ĉq[ĉ

†
pYĉqY (18)
© 2023 The Author(s). Published by the Royal Society of Chemistry
In Jordan–Wigner representation,

Ŝ
2 ¼ I5Ĉ þ Êpq5Êpq; (19)

where Ĉ is the qubit representation of N̂Y restricted to the lastm
qubits, and Êpq is the qubit representation of ĉ†p[ĉq[/̂c

†
pYĉqY

restricted to the rst/last m qubits.
A.2.4 QSE operators. In this work, we chose the QSE excita-

tion operators to be single- and double-electron excitations,
respectively

Êai,s = ĉ†asĉis,Êaibj,ss = ĉ†asĉ
†
bsĉjsĉis. (20)

In Jordan–Wigner representation,

Êai;[ ¼ Êai5I; Êai;Y ¼ I5Êai (21)

for singles and

Êaibj;[[ ¼ Êaibj5I; Êaibj;YY ¼ I5Êaibj; Êaibj;[Y ¼ Êai5Êbj (22)

for doubles. In eqn (20) and (21), Êai/Êaibj is the qubit repre-
sentation of ĉ†a[ĉi[/̂c

†
a[ĉ

†
b[ĉj[ĉi[ restricted to the rst m qubits.

Given two or more operators X̂, Ŷ of the form X̂ ¼P
m

Âm5B̂m

and Ŷ ¼P
n

Ĉn5D̂n, i.e. compatible with eqn (2), their product

can be written as

X̂ Ŷ ¼
X
mn

ÂmĈn5B̂mD̂n; (23)

which is also compatible with eqn (2). The construction in eqn
(23) is used to represent QSE operators as linear combinations
of tensor products.

A.3 Determinant composition of the EF ansatz. Any wave-
function of (Na, Nb) electrons inm spatial orbitals can be written
as a linear combination of electron congurations

jJi ¼
X
ij

jij

��xiyj
�
; jxyi ¼

Ym�1

p¼0

h
ĉ†p[

ixph
ĉ†pY

iyp jBi; (24)

which are Slater determinants, mapped onto bitstrings by
conventional fermion-to-qubit mappings. Here, we elected to
highlight the spin-up and spin-down parts of the conguration
(respectively x and y), but other representations are possible, e.g.
a partition based on groups of spatial orbitals. The EF Ansatz is
formally derived from a singular value decomposition jij =P

msmUimVjm, leading to

jJi ¼
X
m

lm

"X
i

Uimjxii
#"X

j

Vjm

��yj�
#
¼
X
m

lm
��um���vm�; (25)

Thus, the EF Ansatz can reproduce any fermionic wave-
function, provided that (i) all the singular values lm are retained
in the representation eqn (25) and (ii) quantum circuits Û and V̂
such that jumi = Ûjxmi, jvmi = V̂ jymi are available.

In practice, however, the non-zero singular values may be up

to minf
 

m
Na

!
;

 
m
Nb

!)
, which increases combinatorially with

active space size, requiring a truncation. Furthermore, while Û
Chem. Sci., 2023, 14, 2915–2927 | 2923
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and V̂ can be represented as a product of hop-gates with all-to-
all connectivity,36 implementing such circuits on near-term
devices is technically challenging, requiring to use a heuristic
Ansatz.

Determining the expressive power of the EF Ansatz in the
presence of a singular-value truncation and of a heuristic Ansatz
for the quantum circuits Û and V̂ is an open problem. However,
an insightful limiting case can be immediately identied: when
the circuits

Û ¼ V̂ ¼ eK̂ ; K̂ ¼
X
pq;s

Kpqĉ
†
psĉqs; K̂

† ¼ �K̂ (26)

are equal to the exponential of an anti-Hermitian one-body
operator, the EF Ansatz reduces to the familiar multi-
conguration self-consistent eld (MCSCF) quantum chem-
istry method. In such limiting case, the Ansatz bitstrings
correspond to a set of electronic congurations (MC), and the
subsequent circuits perform an orbital optimization within the
active space (SCF). In the present work, we focused on approx-
imations to the ground-state wavefunction for which xm = ym.
This choice corresponds to closed-shell Slater determinants,
and cannot reproduce open-shell singlet or triplet linear
combinations of Slater determinants. In this work, we prepared
excited states with such character using QSE (i.e., applying
suitable linear combinations of single and double excitations),
but for the purpose of improving the accuracy of EF and
allowing state-specic excited-state calculations, one must
allow xm and ym to differ.
B Details of simulations

B.1 Ground-state EF calculations. The expectation value of
the Hamiltonian is written introducing eqn (13) in eqn (2). The
resulting expectation value is minimized, as a function of all
free parameters (hop-gate and orbital-optimization angles and
coefficients lk), using an in-house code78 interfaced with the
classical optimization method L-BFGS-B79,80 and the statevector
simulator of Qiskit.

The variational optimization of coefficients lk is performed
as follows: it is observed that the energy is a second-degree
polynomial in the variables l,

Eðq; lÞ ¼ hJqjĤjJqi ¼
X
kl

lkllhklðqÞ; (27)

where the Schmidt matrix

hklðqÞ ¼ hekðqÞjĤjelðqÞi; jekðqÞi ¼ ÛðqÞjxki5ÛðqÞjxki (28)

is introduced. Therefore, for a xed parameter conguration q,
the energy is minimized when the coefficients l solve the
following Lagrange equations,

vL

vlm
¼ 0; L ¼ Eðq; lÞ � 3

X
k

lk
2; (29)

where a constraint is introduced to ensure normalization of the
EF wavefunction. The solution of the Lagrange equations is
simply hml(q)ll = 3lm, and the energy is minimized when 3 is the
lowest eigenvalue of hml(q).
2924 | Chem. Sci., 2023, 14, 2915–2927
B.1.1 Ansatz design. The Ansatz in Fig. 2 was chosen to
attain a balance between chemical realism and adequacy for
contemporary quantum hardware. The computational basis
states xk are chosen to highlight entanglement between frontier
molecular orbitals, and to ensure that preparation unitaries
require linear qubit connectivity only, as per Fig. 2c. Similar
considerations are made for the subsequent product of hop-
gates. The hop-gate portion of the circuit consists of two
blocks of gates, each acting on a sub-group of 3 qubits. Such
a condition ensures that one of the reference states is preserved
by the action of the EF circuit, Û(q)jx0i = jx0i, so that h00(q) in
eqn (28) takes the form

h00ðqÞ ¼ ½hx0j5hx0j�Ĥ½jx0i5jx0i� (30)

and can thus be computed classically, thereby reducing the
effect of decoherence on EF simulations.36

B.1.2 HOMO–LUMO orbital optimization. In this study, MOs
were not used as active-space basis functions. Instead, we
carried out an orbital optimization81,82 limited to the HOMO–

LUMO subspace, i.e.
��j0

mi ¼
P
l
Rmlð4Þjjli where Rml(4) acts as

a SU(2) rotation on the HOMO and LUMO orbitals. The angle 4
was optimized along with other variational parameters in
a preliminary set of ground-state EF calculations (see Section
B.1), then the unitary R was used to transform the integrals in
the Born–Oppenheimer Hamiltonian with a standard
transformation.

B.1.3 Evaluation of observables. Once the optimal hop-gate
angles and orbital-optimization angles were computed,
quantum state tomography was executed on the EF circuits in
Fig. 2, for the purpose of characterizing decoherence effects,
enabling purication error mitigation, and avoiding repeated
measurements. More specically, n = 6 qubits were measured
in the 3n eigenbases of X, Y, and Z Pauli operators using the
circuit-runner program from the runtime library of Qiskit, and
the 4n entries of the Bloch vector were computed, along with
their statistical uncertainties for noisy simulators, by standard
post-processing. Post-selection was conducted on the proba-
bility distributions of the Pauli measurements. Readout error
mitigation and Clifford error mitigation were conducted on the
individual entries of the Bloch vector, and purication on the
resulting Bloch vector.

Expectation values of quantities like the energy were
computed from the entries of the Bloch vector through standard
error propagation. For example, given an operator

X̂ ¼
X
i

xibsi (31)

and a Bloch vector describing the noiseless, noisy, or hardware
simulation of jfp

kli as
jfkl

pihfkl
pj/2�n

X
i

aiðp; k; lÞbsi; (32)

one has

hfkl
pjX̂ jfkl

pi ¼
X
i

mixi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

vi2xi
2

r
; (33)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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where mi, vi are the mean values and statistical uncertainties
over Bloch vector entries ai(p, k, l). Statistical uncertainties are
propagated to observable properties (i.e. EF expectation values
and derived quantities) with standard error propagation.

B.2 Ground- and excited-state QSE calculations. In the
study of Hamiltonian eigenstates with QSE, we rst measured
the elements of the metric and total spin matrices

Smv ¼ hJqjÊ†

mŜ
2
ÊvjJqi;Mmv ¼ hJqjÊ†

mÊvjJqi; (34)

as described in Sections A.2 and B.1. By solving the eigenvalue
problem Smnfnt = Mmnfntst, QSE matrices are projected on total
spin eigenspaces,

Hmn/Htv ¼ fmtHmnfnv;
Smn/Stv ¼ fmtSmnfnv ¼ dtvst;
Mmn/Mtv ¼ fmtMmnfnv ¼ dtv;

(35)

and the eigenvalue equation Hg = Mg3 is solved within each
subspace. In summary, QSE energies and spins were dened
introducing cmA = fmt gtA and writing

3A ¼ cmAHmncnA

cmAMmncnA
; sA ¼ cmASmncnA

cmAMmncnA
: (36)

Statistical uncertainties were assigned to 3A, sA starting from the
denition eqn (36) as described in the following paragraph.

B.2.1 Statistical uncertainties. Determining eigenvalues and
eigenvectors of noisy matrices is a notoriously delicate proce-
dure.83,84 Since eigenvalues of a matrix where elements are
normally distributed are not normally distributed, statistical
uncertainties are difficult to estimate and are not simply asso-
ciated with variances of Gaussian distributions.

In this work, we resorted to a simple numerical protocol to
assign indicative statistical uncertainties to measured quanti-
ties: (i) we solve the eigenvalue equation Sf =Mfs and Hg =Mg3
using the mean values of the matrices S and M, without
assigning statistical uncertainties to solutions c = fg. In this
work, we obtained non-singular metric matrices, det(M) [ 0,
so that no eigenvalue truncation was necessary. (ii) we propa-
gate statistical uncertainties from the matrix elements Hmn, Smn,
Mmn to the numerators and denominators of eqn (36), and to the
ratio between these quantities, using standard error propaga-
tion. (iii) An identical procedure was used to assign statistical
uncertainties to particle numbers, RDMs, and derived quanti-
ties. Ground- and excited-state RDMs were rescaled so that their
trace was statistically compatible with total particle number.

B.2.2 Evaluation of partial atomic charges. Upon computing
a ground- or excited-state RDM (the former with EF, the latter
with either EF or QSE), the RDM was transformed from the
active-space to the MO basis with a simple unitary trans-
formation r / R(4)rR†(4), then an extended RDM was gener-
ated, by padding the MO-basis RDM with contributions from
frozen MOs,

(37)

and the extended RDM was transformed to the AO basis, ~r /

C~rC−1. Partial charges were then computed with a Mulliken
© 2023 The Author(s). Published by the Royal Society of Chemistry
population analysis based on meta-Lowdin atomic orbitals as
implemented in the PySCF package. Statistical uncertainties
were assigned to partial atomic charges by drawing n = 100
samples of the RDM ~r in the AO basis, computing partial atomic
charges for each sample, and averaging results with standard
statistical operations.

C Details of hardware simulations

Hardware simulations were carried out on ibm_kolkata. Jobs
submitted on the hardware consisted of 150 circuits and ns =
100, 000 shots each. We adapted the circuit-runner program
from the runtime library of Qiskit. One of the unique options for
the circuit-runner program is the ability to correct for
measurement errors (i.e. the roem technique) automatically in
the cloud.

C.1 Effect of error mitigation

In Fig. 6 and 7, we illustrate the impact of various error miti-
gation techniques on the result of this work. In Fig. 6a and e we
focus on ground-state energies, also shown in Fig. 3 of the main
text. Raw/roem noisy simulations on qasm and roem hardware
simulations differ by hundreds of mEh from noiseless results.
Comparison between qasm (roem) and ibm_kolkata (roem)
results indicates that noise models underestimate the impact of
decoherence on observable properties, and comparison
between panels (a) and (e) shows that QSE errors are less
pronounced than EF errors, on average.

In Fig. 6b and f we focus on total spins, and observe that
decoherence causes a form of singlet–triplet spin contamina-
tion, greatly reduced by error mitigation. In Fig. 6c and g we
focus on particle number. Owing to post-selection, this quantity
is essentially noise-free even at the level of roem data. In Fig. 6d
and h we show instead partial charges on the departing H.
Results indicate that partial charges. While this level of accuracy
is satisfactory for qualitative applications (e.g. determining the
distribution of electric charge along dissociation), higher
accuracy is needed for quantitative tasks, such as determination
of electrostatic properties. Fig. 7 shows the effect of error miti-
gation technique on excited-state energies. Decoherence tends
to underestimate singlet–singlet and singlet–triplet gaps,
especially for large R. Error mitigation restores agreement with
noiseless results, but excited-state energies and derived gaps
feature large statistical uncertainties, as documented in Table 1
of the main text. The reduction of such statistical uncertainties
is an important direction of future research.
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