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Rhodium-catalyzed regioselective C–H activation/
Lossen rearrangement/annulation for the green
synthesis of trisubstituted 2-pyridones†
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Multisubstituted 2-pyridones are prevalent in pharmaceuticals and bioactive molecules. We herein report

an efficient and regioselective approach for the synthesis of trisubstituted 2-pyridone derivatives by a

rhodium-catalyzed C–H activation/Lossen rearrangement/cyclization cascade reaction between acryl-

amides and propargyl alcohols. The desirable features of this protocol include a reusable catalytic system,

high regioselectivity, uncommon Lossen rearrangement, good functional group tolerance, operation at

room temperature, simple purification by filtration in most cases, and scale-up synthesis with as low as

1 mol% catalyst loading. Additionally, deuterium labeling and KIE assays were performed to investigate the

reaction mechanism. The vital effect of the hydroxyl group on propargyl alcohols in determining the

regioselectivity was demonstrated by control experiments and DFT calculations. In addition, Mulliken

atomic charge analysis of the key intermediates was also carried out to probe the origin of the observed

preference for the Lossen rearrangement.

Introduction

2-Pyridone is a prevalent scaffold in organic compounds and
bioactive molecules.1 As a class of six-membered aza-hetero-
cycles, the 2-pyridone ring possesses a nitrogen heteroatom
and a carbonyl group which can act as a hydrogen bond
donor/acceptor in medicinal chemistry. In this regard, 2-pyri-
done usually serves as a bioisostere for pyridine, amide, and
N/O-containing heterocycles. Owing to their unique structures,
2-pyridones have been utilized as effective ligands for C–H

functionalization as well as kinase hinge binding motifs.2,3 In
addition, the use of a 2-pyridone moiety as bioisosteres com-
monly has evident influences on the solubility, lipophilicity,
and metabolic stability of bioactive compounds. As shown in
Fig. 1, 2-pyridone derivatives exhibit a variety of pharmacologi-
cal activities, such as antifungal, antiepileptic, anticancer, anti-
fibrotic, cardiotonic, and anti-HIV activities.3b,4 Considering the
prevalence and importance of the 2-pyridone scaffold, it is
appealing to develop efficient methods for the synthesis of
2-pyridones.

Over the past decades, as a direct and step-economical strat-
egy to construct heterocycles, C–H activation reactions by tran-

Fig. 1 Selected bioactive molecules containing the 2-pyridone motif.
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sition-metal catalysis have received much attention.5 In this
respect, transition-metal catalyzed C–H activation/annulation
of benzamides or acrylamides with alkynes has become an
efficient method for the preparation of isoquinolones or pyri-
dones (Scheme 1a).6–8 In recent years, propargyl alcohols have
been frequently utilized in reactions because of their versatile
reactivities.9 Additionally, regioselectivity and chemoselectivity
are usually controlled by both the hydroxyl group on propargyl
alcohols and the directing groups (DGs) in these C–H acti-
vation reactions. For example, a ruthenium-catalyzed C–H acti-
vation/[4 + 1] annulation of benzamides and propargyl alco-
hols was pioneered by Liu and coworkers, in which only one
carbon of propargyl alcohols was involved in the cyclization
(Scheme 1b).9b Very recently, by employing the pivaloyl group
to replace the ethyl group of directing groups, we reported a
green and efficient rhodium-catalyzed C–H activation/annula-
tion of N-(pivaloyloxy)benzamides and propargyl alcohols for
the synthesis of isoquinolones (Scheme 1c).10

Given the prevalence and importance of 2-pyridones, we
wish to develop an efficient and novel method to prepare novel

multi-substituted 2-pyridone derivatives. Owing to the
presence of a hydroxyl group on propargyl alcohols, unique
chemoselectivity and regioselectivity are usually achieved.
Nevertheless, propargyl alcohols are frequently coupled with
aromatic substrates in C–H activation reactions. The C–H acti-
vation/annulation of alkenyl substrates and propargyl alcohols
for the synthesis of multi-substituted 2-pyridones remains
elusive. Inspired by previous works, we speculated whether
propargyl alcohols can facilitate some novel transformations
when reacted with alkenyl substrates. Thus, we herein report a
green and efficient rhodium-catalyzed C–H activation/Lossen
rearrangement of acrylamides and propargyl alcohols for the
synthesis of novel 2-pyridone derivatives at ambient tempera-
ture (Scheme 1d).

Results and discussion

Optimization studies towards the synthesis of 4-cyclopropyl-3-
(hydroxy(phenyl)methyl)-6-phenylpyridin-2(1H)-one 3a are
shown in Table 1. In order to develop a green chemical reac-
tion, we first focused on the use of ethyl acetate as the solvent.
Then, various transition-metal catalysts were screened in the
presence of KOAc at room temperature. No reaction of
2-phenyl-N-(pivaloyloxy)acrylamide 1a with 3-cyclopropyl-1-
phenylprop-2-yn-1-ol 2a was promoted by 4 mol% of MnBr
(CO)5, [Cp*IrCl2]2, Cp*Co(CO)I2, and [RuCl2(p-cym)]2, while the
desired product 3a was obtained in 64% isolated yield when
[Cp*RhCl2]2 was used (Table 1, entries 1–5). To our delight,

Scheme 1 C–H activation reactions of benzamides or acrylamides with
alkynes.

Table 1 Optimization of reaction conditionsa

Entry Catalyst Additive Solvent Yieldb,c (%)

1 MnBr(CO)5 KOAc EA 0
2 [Cp*IrCl2]2 KOAc EA 0
3 Cp*Co(CO)I2 KOAc EA 0
4 [Ru(p-cym)Cl2]2 KOAc EA 0
5 [Cp*RhCl2]2 KOAc EA 64 (59)
6 [Cp*RhCl2]2 KOAc EtOH 22 (16)
7 [Cp*RhCl2]2 KOAc TFE 40
8 [Cp*RhCl2]2 KOAc DCM 44
9 [Cp*RhCl2]2 KOAc Acetone 44 (36)
10 [Cp*RhCl2]2 NaOAc EA 69 (67)
11 [Cp*RhCl2]2 Na2CO3 EA 58 (47)
12 [Cp*RhCl2]2 NaHCO3 EA 69 (58)
13 [Cp*RhCl2]2 CsOAc EA 44 (37)
14d [Cp*RhCl2]2 KOAc EA 57 (35)
15d [Cp*RhCl2]2 NaOAc EA 59 (51)
16e [Cp*RhCl2]2 NaOAc EA 73 (70)

a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (4 mol%),
additive (0.2 mmol), under air, solvent (1.0 mL), room temperature,
12 h. b Total isolated yield. c Isolated yield by filtration is shown in par-
enthesis. d [Cp*RhCl2]2 (2.5 mol%). e Reaction time was 6.0 h.
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Scheme 2 Substrate scope. Reaction conditions: 1 (0.25 mmol), 2 (0.375 mmol), catalyst (4 mmol%), NaOAc (1.0 equiv.), under air, ethyl acetate
(1.0 mL), rt, 6–12 h. Isolated yields by simple filtration are shown in parentheses.
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most parts of the product could be isolated by simple fil-
tration, which avoided the use of large amounts of organic sol-
vents for purification. Different solvents were also investigated.
Unfortunately, none was superior to our initial choice, EA
(entries 6–9). Additive screening revealed that NaOAc and
NaHCO3 were the best bases in terms of total isolated yields
(entries 10–13). However, the product was obtained in 67% fil-
tration yield in the presence of NaOAc while 58% filtration
yield was obtained when NaHCO3 was added. The yield was
decreased when KOAc and 2.5 mol% [Cp*RhCl2]2 were used,
when compared to entry 5 (entry 14). Similarly, when the base
was changed to NaOAc, the total yield also declined to 59% by
using 2.5 mol% [Cp*RhCl2]2 (entry 15). The above-mentioned
reactions were conducted for 12 hours. Subsequently, the reac-
tion time was decreased to 6 hours. Surprisingly, the yield of
3a improved slightly compared with that obtained in 12 hours
(entry 16).

The optimal reaction conditions were then applied to
various substrates, as summarized in Scheme 2. Acrylamides
reacted well with different propargyl alcohols. When the cyclo-
propyl group was placed at R2, both electron-donating (Me and
OMe) and electron-withdrawing (F, Cl, Br, I, CN, NO2 and CF3)
substituents were compatible, with the isolated yields ranging
from 39% to 75% (3b–3k). The structure of 3c was confirmed
by X-ray crystallographic analysis (CCDC number 2213771 for
3c, see the ESI† for more details). In addition, alkynols con-
taining cyclohexyl, N-Boc protected piperidyl, and a series of
heteroaromatic rings such as thienyl, naphthyl and furyl rings
also provided the corresponding products smoothly (3m–3q).
It is also noteworthy that the corresponding products showed

excellent results when using tertiary alcohols, especially
toward those naphthenic groups whose yields even surpassed
that of the template reaction (3r–3u). This suggested that the
reaction could overcome the issue of steric effect. We next
investigated phenyl, methyl and n-butyl at R2 and the reactions
also took place smoothly with yields of 42%, 78% and 31%,
respectively (3v–3x). Besides, the structure of 3w was also con-

Scheme 3 Deuteration and KIE experiments.
Scheme 4 Scale-up preparation, control experiments, and recycling
experiments.
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firmed by X-ray crystallographic analysis (CCDC number
2234440 for 3w, see the ESI† for more details). Subsequently,
the introduction of other groups at R1 was examined.
Obviously, several substituents with different electron pertur-
bations were tolerated and the yields were moderate (3y–3zb).

In addition, it was difficult to obtain a few products (3b, 3j, 3n,
3w, 3x, and 3y) just by simple filtration probably due to their
good solubility in ethyl acetate.

To probe the reaction mechanism, deuterium labeling and
KIE assays were carried out (Scheme 3). In the presence of 1a,

Scheme 5 DFT calculations.
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NaOAc, [Cp*RhCl2]2, and 1.0 mL methanol-d4, about 10% deu-
terium incorporation occurred at the olefinic bond of acryl-
amide 1a. The result indicated that the cleavage of the C(sp2)–
H bond could be reversible. Approximately 100% deuteration
occurred at the hydroxyl group of 3a when 2a was added, and
no obvious deuteration was observed at other positions. In
addition, two parallel reactions were performed to give a KIE
value of 1.12 (Scheme 3b), suggesting that the step of C–H acti-
vation was not the rate-determining step.

Besides, to explore the synthetic utility of the methodology,
several scale-up experiments were performed with lower cata-
lyst loading. As shown in Scheme 4a, product 3a was obtained
in an ideal isolated yield (57%) with 2.5 mol% rhodium cata-
lyst. Then, when 1.0 mol% rhodium catalyst was used, the
corresponding product 3a was afforded in 60% yield, respect-
ively. Inspired by these results, we further explored another
substrate 2p, and the reaction afforded product 3p in 79%
yield. To explore the effect of the hydroxyl group on propargyl
alcohols in determining the regioselectivity, two control experi-
ments were conducted (Scheme 4b). The hydroxyl group of 2a
was removed to prepare 2a-1 and 2a-2. The annulation of 1a
and 2a-1 gave two rearrangement products 4a and 4a′ at the
same time with comparable yields. Similarly, the reaction
between 1a and 3-cyclopropyl-1-phenylprop-2-yn-1-one 2a-2
also afforded two regioisomers 5a and 5a′ in low yields. The
structures of these compounds were determined by using
NOESY spectra. A relatively higher regioselectivity could be
detected for 2a-2 in comparison with 2a-1; we proposed that
the observed regioselectivity might be due to the electron-with-
drawing character of the carbonyl moiety. These results indi-
cated that the hydroxyl group plays a vital role in controlling
the regioselectivity. Significantly, the recycling experiments of
the catalytic system were carried out four times with desirable
isolated yields under the standard conditions (Scheme 4c).

Having established the Rh(III)-catalyzed sequential C–H acti-
vation/Lossen rearrangement/[4 + 2] annulation cascade of
acrylamides with propargyl alcohols, we were next interested to
clarify the deep origin of the unconventional regio-/chemo-
selectivity by detailed DFT calculations. As shown in
Scheme 5a, the five-membered rhodacycle INT-0 was rationally
selected as the starting point, which coordinated with propar-
gyl alcohol 2a followed by a regioselective migratory alkyne
insertion. The calculated results revealed that an additional
hydrogen bond affinity between the hydroxyl group and the
DG was involved in TS-1 (ΔG‡ = 3.6 kcal mol−1) to give INT-2
with a free energy of −25.2 kcal mol−1, while a relatively higher
energy barrier was involved in the converse regioselectivity via
TS-1i (ΔG‡ = 4.8 kcal mol−1). Further IGMH analysis showed
obvious hydrogen bond and van der Waals force interactions
in TS-1, while only van der Waals force interaction was
observed in TS-1i (Scheme 5b). Subsequent coordination
change via TS-2 (ΔG‡ = −14.5 kcal mol−1) afforded INT-3, from
which different reaction paths were calculated. The concerted
Lossen rearrangement/N–O bond cleavage from INT-3 occurred
via TS-3 with an energy barrier of 7.0 kcal mol−1 (from INT-3
to TS-3) to furnish the isocyanate intermediate INT-4 with an

obvious exothermic process. Alternatively, the classic C–N bond
reductive elimination via TS-3ii (ΔG‡ = −0.2 kcal mol−1) involved
a higher energy barrier of 23.0 kcal mol−1 (from INT-3 to
TS-3ii), which was in line with the experimental result that no
3-phenylpyridin-2(1H)-one framework was formed. Moreover,
the Rh(III)–Rh(V)–Rh(III) reaction pathway involving an oxidative
addition process from INT-3 was also ruled out owing to the
relatively higher free energies of TS-4i/TS-4ii. Taken together,
the DFT calculations illustrated a hydrogen bond assisted regio-
selective alkyne insertion/Lossen rearrangement/intramolecular
[4 + 2] cyclization reaction pathway for the developed protocol.
In addition, further Mulliken atomic charge analysis of the key
intermediates was also carried out to probe the origin of the
observed preference for Lossen rearrangement rather than other
reaction manifolds (see the ESI† for details). The results
suggested that the C2 atom in INT-3 occupied a relatively more
positive charge in comparison with the similar benzamide sub-
strate (0.0346 vs. 0.0216). Thus, it can be inferred that there was
an inclination to undergo a nucleophilic attack from the N
atom, ultimately leading to the Lossen rearrangement process.

On the basis of the above mechanistic studies and literature
precedents, we proposed a plausible catalytic cycle for the
developed transformation (Scheme 6). Initially, the active
Cp*Rh(OAc)2 species was generated by anion ligand exchange
in the presence of NaOAc, which coordinated with the acryl-
amide substrate and participated in the alkenylic C–H bond
activation to afford intermediate A. Subsequent regioselective
alkyne insertion led to the formation of intermediate B, in
which the hydrogen bond affinity played a crucial role in
determining the regioselectivity. Furthermore, the Lossen
rearrangement process occurred smoothly to give the isocya-
nate intermediate C, which underwent an intramolecular [4 +
2] cyclization to deliver the 2-pyridone skeleton D. Finally, the
protonolysis of D with the assistance of HOAc released the

Scheme 6 Proposed catalytic cycle.
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desired product 3a along with the regeneration of the Rh(III)
catalyst.

Conclusions

In summary, a green and efficient rhodium(III)-catalyzed C–H
activation/Lossen rearrangement of acrylamides and propargyl
alcohols for the synthesis of novel 2-pyridone derivatives at
ambient temperature was developed. This protocol features a
reusable catalytic system, high regioselectivity, uncommon
Lossen rearrangement, good functional group tolerance, metal
oxidant-free process, operation at room temperature, simple
purification by filtration in most cases, scale-up synthesis, and
air compatibility. Additionally, deuterium labeling and KIE
assays were performed to investigate the reaction mechanism.
The vital effect of the hydroxyl group on propargyl alcohols in
determining the regioselectivity was also demonstrated by
control experiments and DFT calculations. In addition,
Mulliken atomic charge analysis of the key intermediates was
also carried out to probe the origin of the observed preference
for Lossen rearrangement.
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