Issue 44, 2023

Freezing of water and melting of ice: theoretical modeling at the nanoscale

Abstract

Freezing of water and melting of ice at the nanoscale play critical roles in science and technology fields, including aviation systems, infrastructures, and other broad spectrum of technologies. To cope with the icing challenge, nanoscale anti-icing surface technology has been developed. The freezing and melting temperatures can be tailored by manipulating the size (the radius of water or ice); however, it lacks systemic research. In this work, the size effect on the melting temperature of ice nanocrystals was first established, which considered the variation of bond energy and equivalent heat energy from the perspective of the force-heat equivalence energy density principle. Based on the heterogeneous nucleation mode and by further considering the size and temperature effects on the interface energy involved solid–liquid energy and liquid–vapor energy as well as the above developed melting temperature model, another model is established to accurately predict the freezing temperature of water nanodroplets. The parameters required by the two models established in this paper have a clear physical meaning and establish the quantitative relationships among freezing temperature, melting temperature, surface stress, interface energy, and other thermodynamic parameters. The agreement between model prediction and experimental simulation data confirms the validity and universality of the established models. The higher prediction accuracy of this work compared to the other theoretical models, due to the more detailed consideration and the reference point, captures the errors introduced by the experiment or simulation. This study contributes to a deeper understanding of the underlying mechanism of freezing of water and melting of ice nanocrystals and provides theoretical guidance for the design of cryopreservation systems and anti-icing systems for aviation.

Graphical abstract: Freezing of water and melting of ice: theoretical modeling at the nanoscale

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2023
Accepted
16 Oct 2023
First published
01 Nov 2023

Nanoscale, 2023,15, 18004-18014

Freezing of water and melting of ice: theoretical modeling at the nanoscale

Y. Ma, P. Dong, Y. He, Z. Zhao, X. Zhang, J. Yang, J. Yan and W. Li, Nanoscale, 2023, 15, 18004 DOI: 10.1039/D3NR02421K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements