Boosting the sensitivity with time-gated luminescence thermometry using a nanosized molecular cluster aggregate†
Abstract
Luminescence thermometry with trivalent lanthanide ions is a promising avenue for contactless temperature probing. The area has been growing exponentially for the last two decades, and its viability has been successfully demonstrated in various research domains. However, moving from laboratory equipment to real-life applications remains a challenging task. One of the reasons is the possibility of a background luminescence from the probing device or probed environment. To tackle this issue, we elegantly incorporate a rarely explored thermometric approach called time-gated luminescence thermometry (TGLT). Furthermore, we demonstrate an enhanced relative sensitivity through this innovative approach and a path to move toward practical application.