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Frictionless nanohighways on crystalline surfaces†
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The understanding of friction at nano-scales, ruled by the regular arrangement of atoms, is surprisingly incom-

plete. Here we provide a unified understanding by studying the interlocking potential energy of two infinite

contacting surfaces with arbitrary lattice symmetries, and extending it to finite contacts. We categorize, based

purely on geometrical features, all possible contacts into three different types: a structurally lubric contact

where the monolayer can move isotropically without friction, a corrugated and strongly interlocked contact,

and a newly discovered directionally structurally lubric contact where the layer can move frictionlessly along

one specific direction and retains finite friction along all other directions. This novel category is energetically

stable against rotational perturbations and provides extreme friction anisotropy. The finite-size analysis shows

that our categorization applies to a wide range of technologically relevant materials in contact, from adsor-

bates on crystal surfaces to layered two-dimensional materials and colloidal monolayers.

I. Introduction

When two macroscopically rough surfaces are brought close to
each other, they interact only locally at the touching asperities.
The progressive increase of touching asperities with load at
constant nominal area leads to a contact friction that is pro-
portional to load while independent of area. Contact friction
at the atomic scale, on the other hand, follows remarkably
different rules.1–5 At small length scales, static friction is
largely dependent on the atomic arrangement, and, specifi-
cally for crystalline materials, on the mutual relation between
the lattice periodicities of the two contacting surfaces. When
two atomically flat surfaces come close to each other, the
atoms or molecules on one surface can fall into the intera-
tomic gaps of another, leading to an interlocking potential
that is strongly dependent on the atomic arrangement at the
two contacting surfaces. Such atomic interlocking potentials

have strong influences on many nanoscopic frictional pro-
cesses such as scanning tunneling microscopy experiments,6,7

nanomanipulations8–10 and fabrications of layered two dimen-
sional (2D) materials.11 However, our knowledge of such inter-
locking effects is incomplete and often obtained in a case-by-
case manner, largely due to the material-dependent properties
and the complexities of the contacting interfaces such as the
contact incommensurabilities and strong finite-size effects.

In an exemplary commensurate contact where the atoms on
one surface can perfectly match the inter-atom gaps of the
other, interlocking effects are strong as the forces required to
unlock individual atoms add up, thus producing a total fric-
tion that grows linearly with contact size. On the other hand,
when the contacting periodicities are incommensurate, or not
perfectly aligned, interlocking forces cancel out, tendentially
leading to superlubric sliding or structural superlubricity.12–15

The relative orientation and directions of motion of a rigid
crystalline cluster interacting with an underlying periodic
surface were recently shown to be dominated by the possible
emergence of common lattice vectors (CLVs) in real and in
reciprocal space.16,17 Despite results for specific geometries
and potentials,18–20 a precise and general quantitative classifi-
cation of the degree and type of commensurability of contact-
ing lattices and its connection to friction is still currently
called for. The present paper aims at filling this gap.

In concrete, we answer the following question: given a
crystal–crystal interface that involves two 2D lattices, what kind
of ideal frictional behavior can we predict? For a 1D interface,
idealized in the Frenkel-Kontorova model,21 the answer to this
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question depends on whether the lattice-spacing ratio a/b is
rational (high friction) or irrational (superlubric sliding for
sufficiently rigid crystals). For the 2D geometry at hand, we classify
three very different friction regimes that can arise depending on
the (in)commensuration detail in the relation between the two lat-
tices. In between the standard fully commensurate and fully
incommensurate conditions, we identify and characterize an inter-
mediate situation, involving an effective 1D-commensuration that
produces a finite friction in one direction, but leaves incommensu-
rate superlubric sliding in the perpendicular direction. This con-
dition leads to the “locked” free-sliding direction which in the title
we refer to as a frictionless nanohighway, a case of directional struc-
tural lubricity. This phenomenon arises when two surfaces lock
into a specific orientation, such that static friction vanishes in one
specific direction, while remaining finite in all other directions.

Relaxing the condition of infinite size, we obtain theoretical
bounds – plus numerical and experimental evidence – of
finite-size contacts where approximate versions of each of the
infinite-size regimes are realized. In these quasi-commensu-
rate contacts the friction forces along different directions grow
as a function of the contact size following very different
scaling laws: sublinear and linear in low- and high-friction
directions respectively. The emerging anisotropy of friction
effectively reproduces the main features of the infinite-size
limit also for real-life finite-size contacts.

The results obtained in this paper are derived for rigid lat-
tices. The geometric conditions to differentiate the different
friction regimes represents necessary – but possibly not
sufficient – conditions for real (i.e. elastic) systems.22,23

II. The geometric context

We start by recalling a few useful results in the framework of the
algebra of reciprocal (dual) lattices, which will allow us to provide
a full classification of the contacts between rigid periodic solids.

Consider the problem of moving a monolayer adsorbate
crystal across another crystalline surface. Each adsorbate atom
interacts with the lateral corrugation potential generated by
the underlying crystal surface VSðrÞ, characterized by the fol-
lowing periodicity: VSðrÞ ¼ VSðr þ n1S1 þ n2S2Þ, where S1 and
S2 are primitive vectors of the underlying crystal lattice. For
example, we construct VS as

VSðrÞ ¼
X
n1;n2

V r þ n1S1 þ n2S2j jð Þ ð1Þ

where V(r) = −ε exp(−r2/σ2), with σ = 0.1|S1|. Fig. 1a, e and i
illustrates the crystal overlayered on a square-symmetry sub-
strate potential.

The surface forces that contrast the motion of a rigid over-
layer result from the gradient of the total (interlocking) poten-
tial energy. Its value normalized per monolayer particle is

UðrcÞ ¼ 1
N

XN
j¼1

VSðrc þ RjÞ: ð2Þ

here rc is the center-of-mass displacement and Rj are a set of N
lattice-translation vectors, generated as integer linear combinations
of two primitive lattice vectors R1 and R2 of the adsorbate. Precisely
the list of the N translations defines the contact shape and size.

As derived previously,16,17 in the N → ∞ limit of a macro-
scopically large perfect crystalline monolayer, the interlocking
potential is

UðrcÞ ¼
X
Ω

ṼSðΩÞ exp ðiΩ � rcÞ: ð3Þ

here, the Ωs are coincidence lattice vectors (CLVs) common to
both reciprocal lattices of the monolayer and the periodic surface.
ṼSðΩÞ are the relevant Fourier components of VSðrÞ, defined as:

ṼSðGÞ :¼ 1
AS

ð
AS
VSðrÞ e�iG�r d2r; ð4Þ

where AS is the area of the primitive cell of S, i is the imagin-
ary unit. Expression (3) is a 2D generalization of the well-
known “Poisson summation formula”,

P
n
sðnÞ ¼ P

k
s̃ðkÞ where

s̃ is the Fourier transform of s, and the summations run from
−∞ to ∞. The dependence of the potential U(rc) upon the rela-
tive orientation of the two contacting lattices enters the
expression in eqn (3) implicitly via the CLVs Ω.

Notice that the Ω’s included in the summation have unlim-
ited size. A hypothetical purely sinusoidal potential VSðrÞ, as
commonly used in friction modeling,18,24–27 involves few
nonzero Fourier components, resulting in few (or even no)
non-zero terms in the sum of eqn (3). In contrast however,
our example potential constructed as a sum of Gaussian wells,
eqn (1), involves infinitely many nonzero Fourier components,
so that all terms in eqn (3) are potentially relevant.

The focus of the present paper is how the shape of U(rc)
and the consequent friction phenomenology change (often
dramatically), depending on the specifics of the intersection of
the reciprocal lattices of the two contacting crystals.

III. Algebraic basics

A lattice in d dimension is the set of all vectors obtained as
linear combinations with integer coefficients of a set of primi-
tive vectors {R1, R2,…, Rd}. For the lattice R generated by this
set of primitive vectors we use the following notation:

R ¼
Xd
i

niRi : ni [ Z

( )
¼def½R1;R2; :::;Rd�:

ð5Þ

The dual of an arbitrary set of vectors R (not necessarily a
lattice), indicated by R̂, is defined as the set of all elements
Q [ Rd, such that the scalar product 〈Q,ρ〉 is an integer mul-
tiple of 2π for all ρ [ R, i.e.

R̂ ¼ Q : Q; ρh i ¼ 2πk; k [ Z; 8ρ [ Rf g: ð6Þ
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Note that we include a factor 2π, usually omitted from the

standard mathematical definition of a dual. With such conven-

tion, the dual of the lattice is its reciprocal lattice.
Let S be the lattice generated by a second set of primitive

vectors {S1, S2,…, Sd}. The linear sum S þR (defined as the set
of all sums of one element in S plus another element in R) of
the two lattices is generally not a lattice, but it is a set of
vectors, of which we wish to evaluate the dual.

It is a known properties of duals28,29 that R̂> Ŝ ¼ +,
where R̂> Ŝ is the intersection of the individual duals Ŝ and R̂.

We adopt the following notation for the d = 2 problem at
hand: the lattice R and its reciprocal Q :¼ R̂ refer to the over-
layer crystal; S and its reciprocal G :¼ Ŝ refer to the periodic
substrate potential.

We also indicate the linear sum as O :¼ S þR and its dual
Ω :¼ Ô ¼ R̂> Ŝ. By construction, Ω is then the set of CLVs in

reciprocal space, namely those belonging to both reciprocal
lattices R̂ and Ŝ. For this reason, we will occasionally refer to
Ω as the coincidence set.

Note that any two arbitrary lattices R and S can be mapped
to a linearly-transformed lattice R* and a unit square lattice .
The explicit isomorphism is S−1 where S is the matrix whose
columns are the vectors {S1, S2} generating S. With this trans-

formation, S* ¼ = ½ex; ey�, namely the square lattice of unit

lattice spacing, and G* ; cS* consists of all reciprocal vectors
whose Cartesian components are 2π× integers. In practice then,
to classify the structure of O, one can equivalently focus on
O* ¼ S* þR*, i.e. the linear sum of the unit square lattice with
a properly transformed latticeR* ¼ ½R*

1;R
*
2� ¼ ½S�1R�.

In the following we stick to the S−1-transformed lattices R*

and S*. For compactness’ sake we omit all stars. Fig. 1 already
adheres to this convention.

Fig. 1 The three types of contacts between two 2D lattices. (a–d) Fully commensurate, type A; (e–h) 1D-commensurate, type B; (i–m) fully incom-
mensurate, type C. Panels (a, e and i) display the two contacting lattices in real space: grayscale map of the potential VSðrÞ with unit-side square-
lattice periodicity (black to white = low to high energy); blue dots = adsorbate crystal; orange-edge blue dots = CLVs in real space; light blue arrows
= the primitive vectors of the adsorbate lattice. (b, f and j) The corresponding two dual lattices: red dots = adsorbate reciprocal lattice Q; gray dots =
substrate reciprocal lattice G; arrows = coincidence vectors (elements of the set Ω). (c, g and k) the linear sum O of the R and S lattices in the
Wigner–Seitz cell of the substrate. (d, h and m) the resulting interlocking potential energy (eqn (2), colorbar at the right) as a function of the adsor-
bate translation within the substrate Wigner–Seitz cell; for the adopted corrugation potential of eqn (1), ṼSð0Þ ¼ �0:0628ε. The adsorbate lattices
are: (a–d) a square lattice with R1j j ¼ ffiffiffi

5
p

=3, and orientation θo = tan−1(1/2); (e–h) a triangular lattice with R1j j ¼ ffiffiffiffiffiffiffiffi
3=2

p
, and orientation θo = 15°; (i–m)

a rhombic lattice with primitive vectors of length R1j j ¼ ffiffiffi
5

p
=3 separated by an angle ψ = 1 rad, with orientation θo = tan−1(1/2).
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In the next section, we show that three different categories
of O (or its dual Ω) can arise, depending on the mutual (in)
commensuration of R and S. We further show that the specific
type of O pertinent to a given interface between two flat crystal-
line surfaces bears important implications for the friction
exhibited by this interface when the surfaces are set in relative
motion.

IV. Three categories of
commensurability

For a 1D interface, the degree of commensuration is dictated
by the ratio a/b between the lattice spacing of the adsorbate
and that of the substrate:30–32 if this ratio is a rational number,
then the two lattices are commensurate; if this ratio is
irrational, the lattices are incommensurate. In the rational
case the coincidence set Ω is a 1D lattice where the periodicity
is given by the denominator of the ratio. Then the linear-sum
space O is also a discrete set of points repeating along the 1D
line, i.e. a 1D lattice. In the irrational case there are no CLVs
and Ω contains the null element only. Hence the sum space O
covers densely the 1D line. For a rigid contact, the rational
case has finite friction, while the irrational case is frictionless.

In 2D the linear sum O is a set of vectors in R2. The friction
experienced by the overlayer when it is translated relative to
the substrate potential is determined by the geometric mutual
commensuration relations of the vectors in R and S, and their
implications for O. These relations characterize how the real
plane R2 is covered by the vectors in the sum space O. This
coverage occurs in one of three qualitatively different types:

• a sparse coverage by a discrete set of points forming a 2D
lattice – Fig. 1c,

• a “comb” coverage by an array of parallel lines – Fig. 1g,
and

• a dense33 area coverage – Fig. 1k.
These geometric alternatives result in three dramatically

different patterns of interlocking potential, illustrated in the
rightmost column of Fig. 1, and therefore different friction
properties. In the following subsections we detail the con-
ditions determining these coverage categories in terms of the
reciprocal lattice Q ¼ R̂ and of the coincidence set Ω.

A. Discrete coverage

Discrete coverage occurs when there exist two linearly indepen-
dent vectors {Q1, Q2} in the dual Q of the adsorbate crystal

lattice R such that all components of these vectors are 2π×
integer numbers, i.e. Qiμ=ð2πÞ [ Z with i = 1, 2 and μ = x, y.

The above condition means that Q1, Q2 exist in G as well,
i.e. Q1;Q2 [ Ω ¼ Q> G. In this case, summarised in the first
row of Table 1, Ω is a 2D lattice. As a corollary of the above con-
dition, all reciprocal vectors Qi [ Q are such that their com-
ponents Qiμ/(2π) are rational numbers; see Methods section IX
for a proof.

We pick two primitive vectors Ω1 and Ω2 of this coincidence
reciprocal lattice Ω = [Ω1, Ω2], as illustrated in Fig. 1b. The
resulting interlocking potential, as expressed in eqn (3), exhi-
bits a non-vanishing corrugation along both independent
directions of Ω1 and Ω2. The interlocking potential energy
landscape for the center-of-mass translation takes on a nontri-
vial shape, such as e.g. the one depicted in Fig. 1d. It can be
expressed as

UðrcÞ ¼
X
j1;j2

ṼSðj1Ω1 þ j2Ω2Þ � expðiðj1Ω1 þ j2Ω2Þ � rcÞ; ð7Þ

where the sum runs over all integers j1; j2 [ Z. Fig. 1d reports
this function as resulting from the Fourier components of the
potential of eqn (1). The potential energy landscape reveals a
new lattice periodicity, precisely the one emerging in the sum
space O, Fig. 1c. In general, this new periodicity is either equal
to or shorter than that of the original substrate.

When the monolayer is forced across the periodic surface,
it will move more easily along certain directions than along
others, due to potential-barrier directional anisotropies. In the
example of Fig. 1d, the easy directions are the substrate lattice
symmetry directions which avoid the maxima of the energy
landscape.

Motion along these preferential directions is usually named
directional locking. This phenomenon was observed experi-
mentally in several systems, e.g., for a triangular colloidal crys-
talline 2D cluster sliding across a triangular substrate,16,17,34,35

for AFM-pushed gold islands on MoS2,
36 for magnetic vortex

lattice under a Lorentz force,37 and for Wigner crystals on a
periodic substrate.38 Directional locking has also been
observed by numerical simulations in several different
contexts,39–44 e.g. the motion of magnetic skyrmions45,46 and
dusty plasma47 on a periodic potential.

B. Line coverage

A second nontrivial condition occurs when the coverage O is
neither discrete nor dense in the whole space. This condition
is realized when the dual set Ω ¼ Q> G is a 1-dimensional
lattice, as in Fig. 1f. In practice, one can identify a nonzero

Table 1 The three categories of commensurability, based on how the reciprocal lattice vectors Q [ Q ¼ R̂ of the overlayer crystal match the reci-
procal G ¼ Ŝ of the substrate unit square lattice

Type Condition on the Q ¼ R̂ lattice Coverage O
A 9Q1;Q2 [ Q n 0f g : Qiμ=ð2πÞ [ Z and9=α [ R : Q1 ¼ αQ2 2D discrete
B 9Q1 [ Q n 0f g : Q1μ=ð2πÞ [ Z and 8Q2 [ Q : Q2μ=ð2πÞ [ Z, 9α [ R : Q2 ¼ αQ1 1D discrete ⊗ 1D dense
C 9=Q [ Q n 0f g : Qμ=ð2πÞ [ Z 2D dense
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reciprocal lattice vector Q1 [ Q with the property of having
both integer components Q1μ=ð2πÞ [ Z. All other vectors in Q
either are multiples of Q1 or have at least a component divided
by 2π that is an irrational number. Pick one of the two shortest
nonzero inversion-symmetric CLV, namely the vectors with the
properties of Q1, and call it Ω. As a result the coincidence set
Ω contains a unique linearly-independent direction, that of Ω.
In other words, Ω is a 1-dimensional lattice Ω = [Ω], simply the
set of all integer multiples of Ω. When this condition is met,
the linear sum space O is a set of discretely-spaced parallel
lines aligned perpendicularly to Ω, and covered densely in a
1-dimensional sense, see Fig. 1g. This condition is summar-
ised in the second row of Table 1.

In terms of the shortest CLV Ω, the interlocking potential
energy of eqn (3) becomes:

UðrcÞ ¼
X
n

ṼSðnΩÞ expðinΩ � rcÞ; ð8Þ

which is the analog of eqn (7) except now the sum spans the
1D lattice generated by Ω. As a consequence, the interlocking
potential is a function uniquely of the component of the dis-
placement vector rc in the Ω direction. Explicitly, and impor-
tantly, U(rc) is completely independent of the displacement
component of rc perpendicular to Ω. The function U(rc) can be
pictured as a periodic set of parallel straight troughs separated
by straight hill ridges, see Fig. 1h. Troughs and ridges are
aligned perpendicular to Ω. As a result, the contact behaves
“as commensurate”, and exhibits a finite static friction, in all
directions, except for this direction perpendicular to Ω. In this
direction it behaves “as incommensurate” with vanishing static
friction, since the through bottom is “flat”, i.e. has a constant
energy.

A natural name for this condition is directional structural
lubricity.

We are not aware of any previous work where this regime of
frictionless nanohighways is hypothesized, nor any existing
experiment where this condition was pointed out. In section V.
D below we report its realization in a colloidal experiment, and
propose possible heterogeneous contacts between 2D nano-
materials where it should also be accessible.

We realize that in general, if two lattices share the same
rotational symmetry of order n > 2, then there arise either two
or no linearly independent CLVs in Ω. Therefore the resulting
contact cannot belong to this type B. In Methods section X we
report an argument to illustrate this point.

C. Dense coverage

The final possibility occurs when no nonzero reciprocal lattice
vector in Q exists such that both its components divided by 2π
are integer. This statements amount to say that the coinci-
dence set is Ω = {0}, as summarised in the final row of Table 1.
The corresponding sum set O is dense, as shown in Fig. 1k.

The Fourier expansion (3) only includes the null vector: as a
result, the interlocking potential energy is perfectly flat

UðrcÞ ¼ ṼSð0Þ; ð9Þ

as in Fig. 1m. No energy is gained or spent in rigidly translat-
ing the monolayer by an arbitrary amount in an arbitrary direc-
tion. Static friction vanishes. This is the well-known condition
of structural superlubricity of fully incommensurate
lattices.13,14,48

Interestingly, two lattices can even share CLVs in real space,
but still have a dense sum space O. This occurs in the example
of Fig. 1i–m: these two lattices happen to have infinitely many
coincidence points along the substrate direction S′ = (2, 1), i.e.
the intersection R> S ¼ ½S′� (orange-edged blue circles in
Fig. 1i). However this real-space intersection is irrelevant to the
lubricity of this contact. Instead, the relevant coincidence set
Ω contains only the null vector (Fig. 1j), and, as a result, the
2D linear space is covered densely (Fig. 1k), the average poten-
tial energy is flat (eqn (9) and Fig. 1m), and the static friction
vanishes equally in all directions.

V. Finite size

The formulas (7)–(9) for the interlocking potential U(rc) are
valid for an infinite 2D crystalline overlayer interacting with an
infinite periodic surface. In practice, however, no contact is
infinitely extended. In real-life conditions the overlayer region
in contact with the substrate forms a crystalline cluster of
finite size N. Its finite size and shape do affect the details of
the interlocking potential energy U(rc): in the following, we
derive analytical expressions for finite-size contacts and their
implications on the frictional behaviour.

As in eqn (2), we express the position of each particle as a
function of the cluster center of mass displacement rc and
lattice vectors: rj = rc + Rj, where precisely the list of the N
translations Rj [ R defines the cluster shape and size.

Starting from eqn (2), we write the explicit expression for
the interlocking potential energy U(rc) in terms of the sub-
strate-potential Fourier decomposition.

UðrcÞ ¼
X
G[G

ṼSðGÞ exp ðiG � rcÞ

� 1
N

X
j

exp ðiG � RjÞ
ð10Þ

¼
X
G[G

ṼSðGÞ expðiG � rcÞ

� 1
N

X
j

exp ðiðG� QÞ � RjÞ
ð11Þ

where Q [ Q is an arbitrary vector of the reciprocal lattice of
the adsorbate.

In going from eqn (10) to eqn (11) we use the property of
the reciprocal vectors Q that expðiQ � RjÞ ¼ 1 8j. We take advan-
tage of the freedom in the choice of Q [ Q to pick Q = Q̄ such
that |G − Q̄| is minimum, and we define

δΩðGÞ ¼ G� Q̄ ð12Þ
to ensure that δΩ(G) fits in the Wigner–Seitz cell of the adsor-
bate reciprocal lattice, i.e. in the first Brillouin zone of R. Note
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how this notation relates with the infinite-size classification of
section IV: if G is a common vector between the substrate
and adsorbate reciprocal lattices, i.e. G ∈ Ω, then δΩ(G) = 0 for
that G.

The interlocking potential energy in eqn (11) now reads

UðrcÞ ¼
X
G[G

ṼSðGÞ expðiG � rcÞ

� 1
N

X
j

expðiδΩðGÞ � RjÞ
ð13Þ

¼
X
G[G

ṼSðGÞ expðiG � rcÞWðδΩðGÞ;NÞ; ð14Þ

where we defined the weight factor

WðδΩðGÞ;NÞ ¼ 1
N

X
j

expðiδΩðGÞ � RjÞ: ð15Þ

In the following, we omit the explicit dependence of δΩ(G)
on the substrate lattice vector G, δΩ = δΩ(G).

Eqn (14) expresses the interlocking potential energy U(rc) as
a Fourier summation over all the components ṼSðGÞ of the
substrate potential.16 The novelty of finite size compared to
eqn (3) is that the summation of eqn (14) is not limited to
CLVs and it involves the extra size-dependent weight factor
defined in eqn (15).

In the N → ∞ limit, this weight W(δΩ, N) vanishes for those
Fourier components with δΩ ≠ 0. Therefore, only the δΩ = 0
components determine the overall corrugation of the infinite-
size crystal, in agreement with the classification discussed in
the previous section.

At finite size, W(δΩ, N) needs not vanish for any G, regard-
less of whether δΩ vanishes or not. As a consequence, a priori
any Fourier component ṼSðGÞ of the substrate potential can
contribute to the interlocking potential energy U(rc).

In general, the weight W(δΩ, N) is a nontrivial function of
δΩ, which depends on the cluster shape. However, for special
shapes, analytic expressions for W(δΩ, N) can be derived.

A. Special shapes

As a concrete example, consider a parallelogram-shaped
cluster of N particles whose particle positions can be expressed
as Rj = j1R1 + j2R2, with integer
j1; j2 ¼ � ffiffiffiffi

N
p � 1
� �

=2; . . . ;
ffiffiffiffi
N

p � 1
� �

=2, where
ffiffiffiffi
N

p
is assumed

to be an odd integer, and R ¼ ½R1;R2�. By construction, the
cluster center of mass coincides with the particle indexed by j1
= j2 = 0. For this cluster shape, the weight function of eqn (15)
can be written as

WðδΩ;NÞ ¼ 1
N

X
j1;j2

expðiδΩ � j1R1Þ expðiδΩ � j2R2Þ

¼ 1
N
sin ð ffiffiffiffi

N
p

δΩ � R1=2Þ
sinðδΩ � R1=2Þ

sinð ffiffiffiffi
N

p
δΩ � R2=2Þ

sinðδΩ � R2=2Þ :

ð16Þ

Each factor f ðxÞ ¼ sinð ffiffiffiffi
N

p
x=2Þ=sinðx=2Þ in eqn (16) relates

to the Fraunhofer diffraction from a narrow-slit grating.49 As a
function of x = δΩ·Ri, each oscillating factor f (x) peaks at x =

2nπ (for n [ Z), where it reaches its extreme values ð�1Þn ffiffiffiffi
N

p
,

i.e. +
ffiffiffiffi
N

p
. As a special consequence, whenever δΩ vanishes,

both fractions becomes equal to
ffiffiffiffi
N

p
, leading to W(δΩ, N) = 1:

the weight of the corresponding Fourier components in eqn
(14) is independent of size.

The peak width of f (x) is inversely proportional to
ffiffiffiffi
N

p
, and

away from the peaks, say in the intervals 2π(n + N−1/2) < x <
2π(n + 1 − N−1/2) f (x), oscillates around 0, with values of order
1. As a result, for large cluster size, weights associated to both
nonzero δΩ·R1 and δΩ·R2 decay as N

−1. Instead, when just one
of these factors vanishes, we expect a nontrivial leading large-
size behavior of the associated weight factor, typically as N−1/2.
These observations account for the leading importance of the
Fourier component in the interlocking potential U(rc) as
detailed in the following subsections.

B. Coincidence lattice vectors (CLVs)

When there are CLVs in the dual space, an infinite subset of G
vectors (those belonging to Ω) is associated to vanishing δΩ.
For all these terms the weights W(δΩ, N) equal unity, and as a
result, the corresponding Fourier components in eqn (14) con-
tribute as much as for the infinite-size layer, independently of
size. All other Fourier components, characterized by nonzero
δΩ, can contribute with size-dependent weights. This distinc-
tion between size-independent and size-dependent Fourier
weights applies to systems with discrete-O (type-A) and line
coverage (type-B) geometries, as discussed for the infinite size-
limit in section IV.

Let us focus first on type-A contacts, where two linearly
independent CLVs Ω1, Ω2, with δΩ = 0, exist. Consider also two
non-CLV vectors G1, G2, with δΩ ≠ 0, as exemplified in Fig. 2a.
It is possible to obtain instructive results for the special paral-
lelogram-shaped clusters introduced in previous section. For
Ω1,2 and G1,2, Fig. 2b reports the Fourier amplitudes ṼS , modu-
lated by the weights W, computed according to eqn (16). The
weight factor W is identically unity at any size for the CLVs
(orange dashed line), while it oscillates and decreases as a
function of size for non CLVs (blue solid line).

To elucidate the origin of the G1,2-weight oscillations it is
convenient to focus on a subset of cluster sizes. Consider the
clusters constructed as

ffiffiffiffiffi
N′

p � ffiffiffiffiffi
N′

p
repetitions of a parallelo-

gram supercell constructed on a pair of independent real-
space CLVs R1

CLV and R2
CLV, namely vectors with all integer

components (e.g. the blue orange-edge dots in Fig. 1a). The
existence of these real-space CLVs is demonstrated in Methods
section IX. The supercell defined by these (usually non-primi-
tive) vectors contains K vectors and thus the number of par-
ticles is N = KN′. By construction, these special clusters consist
of an integer number of identical moiré tiles of K particles in
which the relative position of adsorbate and substrate is the
same in all repeated units, since R1

CLV and R2
CLV belong to the

substrate S lattice too. As a consequence, the average corruga-
tion U(rc) for this class of “moiré-matched clusters” is indepen-
dent of the number N′ of moiré patterns in the cluster and
coincides with that of the infinite layer. Thus, the only surviv-
ing components in eqn (16) are the CLV with δΩ = 0 that con-
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tribute to the corrugation at infinite size: the weight W of any
non-CLV vanishes exactly for these “moiré-matched clusters”,
as indicated by black arrows in Fig. 2b. The vanishing of W is
equivalent to the suppression of the artefact Bragg peaks
arising when a non-primitive (e.g., conventional) unit cell is
adopted, a well-known feature of the structure factor in crystal-
lography,50 as elaborated in Methods section XI. This effect
was previously noted in realistic crystalline interfaces:51,52

these “moiré-matched clusters” exhibit no size effects, as long
as they remain perfectly rigid.

For all other parallelepiped clusters of sizes in between
these “moiré-matched clusters”, this cancellation does not
occur, leading to W(δΩ, N) ≠ 0 for non CLVs: the weight func-
tion W oscillates as a function of size. |W| reaches a sequence
of maxima, whose peak height decays ∝ N−1 (blue curve in
Fig. 2b). Hence the incomplete moiré tiles at the edges result
in a size-dependent corrugation, as illustrated in Fig. 2c–e.

C. Development of directional structural lubricity

Let us now focus on type-B systems, where Ω is a 1D lattice.
The novelty is that a more restricted class of δΩ’s vanishes,

and, as a result, the vast majority of the G vectors in the sum-
mation of eqn (14) lead to size-dependent Fourier
contributions.

In the (not guaranteed) circumstance that, beside recipro-
cal CLVs, we also identify a real-space CLV R1

CLV, we can
adopt it as one of the primitive vectors for a supercell. The
second supercell primitive vector R2 can be chosen freely
among the lattice vectors linearly independent of R1

CLV, e.g.
R2 in Fig. 1e. Compared to the discrete- O condition, here R2

is certainly not a CLV. As in the previous section, such a
supercell contains K vectors Rk, yielding a cluster of size N =
N′K. See Fig. 3a, c and e for examples of clusters built with
this protocol.

For this class of clusters, the first factor in eqn (16) has
δΩ·R1

CLV = 0, and thus expðiδΩ � R1
CLVÞ ¼ 1, because R1

CLV

belongs to both the adsorbate and substrate lattice, i.e.
R1

CLV [ R> S. As a result, the second factor leads to a scaling
N−1/2 for any δΩ ≠ 0: the weight is constant for the CLV Ω
while the envelope of non-CLV weights decays as N−1/2.

The corrugation of this system can be expressed as the sum
of the size-independent term, namely the Ω-sum of eqn (8)

Fig. 2 Finite size effects in a contact with discrete coverage. Finite-size analysis for the discrete-coverage (type A) condition in Fig. 1a–d, i.e. a
square-lattice adsorbate with R1j j ¼ ffiffiffi

5
p

=3, and orientation θo = tan−1(1/2). (a) Reciprocal lattices of the adsorbate (Q points, red dots) and of the sub-
strate (G points, gray dots); orange arrows highlight two CLVs Ωi = 1,2; blue arrows indicate the substrate primitive vectors Gi. Red dashed squares
show the first Brillouin zone of the Q lattice at each lattice point Q. The dashed blue arrows indicate δΩ(Gi), defined in eqn (12), i.e. the Q̄-translated
vectors Gi = 1,2. Note that δΩ(Ωi) = 0. (b) The size dependence of the Fourier components ṼSW (eqn (14)) associated with the CLVs Ωi (dashed orange
line) and for the primitive vectors Gi (solid blue line). The pink, green and black circles mark the cluster sizes N = 25, 49, 3025 of panels (c), (d), and
(e), respectively. (c–e) Interlocking potential energy as a function of the cluster center-of-mass position rc across the square [−1, 1] × [−1, 1] for the
displayed clusters. Solid black scalebars in panels (c–e) stand for five lattice spacings. The color scale is the same as in Fig. 1. The gray dashed line
highlights the Wigner–Seitz cell of the S lattice, namely the area shown in Fig. 1d.
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(resulting in the corrugation of Fig. 1h), plus the remaining
contributions, which decay as a function of size:

UðrcÞ ¼
X
n

ṼSðnΩÞexpðinΩ � rcÞ

þ
X
GnΩ

ṼSðGÞexpðiG � rcÞWðδΩ;NÞ;

WðδΩ;NÞ/ K=
ffiffiffiffi
N

p
:

ð17Þ

An example of size evolution of the energy landscape resulting
from eqn (17) is reported in Fig. 3b, d and f. For large size, U(rc)
approaches the straight and flat energy corridors of Fig. 1h.

The Fourier amplitude of each term in eqn (17) is the
product of the weight W(δΩ(G), N) times the substrate Fourier
component ṼSðGÞ evaluated at the same vector G. Assuming,
as is usually the case, that the surface corrugation potential
VSðrÞ is a smooth function, then its Fourier amplitudes
ṼSðGÞj j tend to decay with |G|. As a consequence, long G

vectors even if leading to nearly perfect matching (i.e. small
δΩ(G)), usually yield quite small, practically negligible contri-
butions to the energy landscape. As a result, the size-depen-
dent term in eqn (17) is usually dominated by a few small-|G|
Fourier components.

This size-dependent energy corrugation has important
implication for friction. In an overdamped context where
inertia is negligible, the minimum per-particle force Fs needed
to sustain the motion of the adsorbate crystal in a given direc-
tion û, namely the static friction force Fs in that direction, can
be estimated by max

rc[L
jû � ∇UðrcÞj, where L is the straight line

connecting two successive energy minima in the û direction.
In the present type-B condition, if û is aligned along the
energy corridors, then only the δΩ(G) ≠ 0 components contrib-
ute, leading to Fs ∝ N−1/2, whereas if û has a nonzero com-
ponent perpendicular to the corridors, then Fs contains a
leading component ∝ N0 from the G ∈ Ω Fourier components.

Fig. 3 The development of directional structural lubricity with increasing contact size. (a), (c) and (e) Adsorbate clusters of different sizes with the
same contact incommensurability (type B) as of Fig. 1(e), namely a triangular-lattice adsorbate with spacing jR1j ¼

ffiffiffiffiffiffiffiffi
3=2

p
and orientation θo = 15°

sliding across a square-lattice substrate with unit lattice spacing. These special-shaped clusters here are constructed by repeating a K = 4-particle
unit (shaded area in panel a) based on a real-space CLV R1

CLV (red arrow in panel a) and a primitive vector R2 (light-blue arrow in panel a). The
corners of the repeated cell are highlighted in blue. The black bar in each panel spans 10 substrate lattice spacings. The insets report the corres-
ponding coverage O for that given size. (b), (d) and (f ) The interlocking potential energy of the clusters in (a), (c) and (e) respectively as a function of
rc ∈ [−1, 1] × [−1, 1]. The color code is the same as in Fig. 1. The gray dashed line highlights the Wigner–Seitz cell. (g) The cluster-size dependence of
static friction for the directionally superlubric interface. Filled (empty) symbols refer to the unpinning force parallel (perpendicular) to the low-
energy corridors, or perpendicular/parallel to the CLV Ω, respectively. These directions are sketched in panel (f ). The investigated shapes of the clus-
ters (circles, hexagons, parallelograms) are reflected in the data-point shapes and colors (red, blue, and orange/green). Parallelograms are generated
by replicating two kinds of supercells: either based on a real-space CLV (orange) or not (green); the adopted supercell lattice vectors are respectively
4R1 + 2R2 and 2R2 (orange), or 2R1 and 2R1 + 2R2 (green), where R1 R2 are identified in Fig. 1e. The dotted, solid, and dashed lines report the Fs ∝ N0,
Fs ∝ N−1/2, and Fs ∝ N−1 scalings as guides to the eye.
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We have verified numerically that the same power laws-
scaling of Fs holds not just for special-shaped parallelogram
clusters, but also for different shapes, as reported in Fig. 3g:
similar decays of Fs parallel to the energy corridor are found
for each shape. However, it is apparent that, for a given size,
different cluster shapes can change the value of this parallel
friction component by an order of magnitude. In contrast, the
size-independent perpendicular friction component is nearly
independent of the cluster shape, too.

These direction-dependent scaling laws justify the name
directional structural lubricity for the type-B interface condition:
along the energy corridor the total friction NFs scales subli-
nearly with the cluster size, as in standard structural lubricity,
while parallel to these corridors the total friction NFs grows lin-
early with size, like for a ordinary structurally-matched
interface.

D. Close-matching vectors

We come now to extend the exact classification of section IV to
interfaces which – strictly speaking – belong to type C, but
come with a set of relatively short G vectors characterized by a
very small mismatch |δΩ(G)|, see eqn (12): close-matching
vectors (CMVs). This approximate classification holds for
finite, and not-too-large clusters.

When the two crystals are incommensurate (type-C), the
“standard” properties of structural lubricity should apply.
However we argue here that in the presence of CMVs the cat-
egories and size scaling introduced above survive, up to a
maximum cluster size related inversely to |δΩ(G)|. In this
section we focus on directional locking and directional struc-
tural lubricity, showing that, in specific size ranges, they are to
be expected for type-C interfaces with CMVs. This analysis is
especially relevant for heterocontacts, where perfect matches
(whether of type A or B) are unlikely.

We recall that, for each substrate Fourier component identi-
fied by G, the N-dependence of both factors f (x) in eqn (16)
implies a critical size below which W(δΩ(G), N) ≃ 1 because
both f (x) factors in W are of order N1/2. For a special-shape
cluster (see section V.A) based on the vectors R1 and R2, the
critical size associated with a substrate vector G is

NcðGÞ ¼ min
2π

δΩðGÞ � R1
;

2π
δΩðGÞ � R2

� �� �2
; ð18Þ

where the argument of the square is meant to be rounded to
the next integer. If the cluster size is N ≲ Nc(G), then

WðδΩðGÞ;NÞ ’ 1: ð19Þ
Let us assume that there exists a single independent CMV

G′ ≃ Q′ such that, at its critical size N+ = Nc(G′), G′ gives the
dominant contribution to the corrugation energy U(rc) of the
contact in eqn (14). The G′ Fourier component becomes the
dominating one only beyond some minimum size N−, defined
as the largest N < N+ such that 9G [ G n +G′f g which satisfies
ṼSðGÞWðδΩðGÞ;NÞ �j jṼSðG′ÞWðδΩðG′Þ;NÞj j.

If the contact conditions are such that N− is significantly
smaller than N+ then this contact exhibits approximate direc-
tional superlubricity for all sizes in the range N− < N < N+. In
this size range, the direction perpendicular to G′ exhibits a
very small corrugation associated to minor Fourier com-
ponents, negligible compared to the ṼSðG′ÞWðδΩðG′Þ;NÞ term,
which is responsible for a sizeable corrugation in the direction
parallel to G′. As the size N exceeds N+, also this sizeable corru-
gation perpendicular to the superlubric “corridor” begins to
fade away due to the decay of W(δΩ(G′), N), until “standard”
direction-independent structural lubricity of an extended type-
C contact is recovered.

We report an experimental test of these predictions, exe-
cuted letting a triangularly-packed colloidal cluster slide over a
surface patterned with a square lattice, as shown in Fig. 4a
and b. This setup consists of the fully tunable microscale
system mimicking an atomistic interface reported previously
in ref. 16,17 and 53, see Methods XII for details. The geometry
of the system generates a CMV G′ ≈ Q1 − 2Q2 which leads to a
nearly-type-B contact across a broad range of sizes, with clear

Fig. 4 Experimental realisation of directional structural lubricity. (a and
b) A triangularly packed colloidal cluster of size N = 185 with spacing a =
4.45 μm sliding across a square-lattice surface with spacing b = 5.0 μm.
The green lines in both panels indicate the cluster’s center of mass tra-
jectory (see also movie 1†) over a period of 85 seconds under the indi-
cated applied forces perpendicular (a) and parallel (b) to the energy cor-
ridor. If the same force strength of 37 fN was applied in the direction of
panel (a), the cluster would not move at all: a strong friction anisotropy
is revealed. (c) The calculated potential energy landscape of the cluster
in panels (a and b) at orientation θo = 3.4°, revealing corridors along the
−25.6° direction. (d) The experimentally measured static friction force
for many different-sized experimental clusters perpendicular (empty
gray circles) and parallel (filled purple circles) to the energy corridor.
Lines are power-law fits Fs = F0N

γ to the corresponding data for clusters
of N > 2N− ≃ 30 particles (dot-dash black line). The fitted parameters are
F0 = 467.4 fN, γ = −0.67 ± 0.07 and F0 = 76.3 fN, γ = −0.01 ± 0.02 for
the parallel and perpendicular directions, respectively. A detailed
description of the experiment is provided in Methods section XII.
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energy corridors shown in Fig. 4c. We can estimate the critical
sizes of this system to be N− ≃ 15 and N+ ≃ 1620, adopting a
Gaussian model for the corrugation profile of each substrate
well, as in eqn (1), with parameters taken from ref. 53. Fig. 4d
reports the measured static-friction forces in the direction of
the energy corridors (filled purple circles in Fig. 4d), and per-
pendicular to it (empty gray circles in Fig. 4d), as a function of
the cluster size N. The results are in good agreement with the
predicted scalings. Indeed the static friction perpendicular to
the energy corridor is approximately constant from 2N− (dash-
dotted line in Fig. 4d) up to the largest experimental size, with
a fitted power-law exponent γ = 0.01 ± 0.02 (dotted gray purple
line in Fig. 4d). On the contrary, the static friction along the
energy corridors, exhibits a power law of exponent γ in
between −1 and −1/2 (dashed purple line in Fig. 4d), in
remarkable agreement with the theory given the random
shapes of experimental clusters.

VI. Stability against rotation

So far, the relative orientation of the two crystals, has been
implicitly fixed by the angle θo between the first primitive
vectors of the two lattices, R1 and S1. Clearly, upon rotation the
same system may realize a type-A contact (2D array of CLVs), or
a type-B contact (1D CLV array), or a type-C contact (fully
incommensurate, no CLVs). In practice it is unlikely that one
can artificially keep the contact at an arbitrarily fixed mutual
angle: in most concrete setups the contact will eventually relax
to an energetically stable condition. It is therefore essential to
examine the angular energetics of such contacts and their
stability upon rotation.

For example, it is well known that structural lubricity in
homocontacts arises from the misalignment of the two lat-
tices. However, this misalignment comes with an energy cost,
that makes the superlubric contact unstable.48,54,55 In homo-
contacts therefore energetics acts to stabilize the type-A
geometry.

We argue that for heterocontacts the same stabilization
occurs. Depending on the geometric details, this stabilization
may lead to either a type-A or a type-B contact. Under such con-
ditions, the important outcome is that directional locking and
directional structural lubricity are energetically stable. If the crys-
tals mutually rotate from a fully incommensurate kind-C geo-
metry where the interlocking energy is given by eqn (9), to
such an angle that CLVs in the reciprocal space arise,
additional terms appear in the interlocking potential of eqn
(3), leading to potentials of the form (7) or (8). Consequently,
for these orientations, these Fourier components in the inter-
locking potential provide an energy lowering at the equili-
brium position, not available in type-C configurations. This
means that when a contact allows for type-A or type-B con-
ditions, the corresponding orientations are indeed the most
stable ones.

It is straightforward to check this energetics numerically,
not only for the infinite contacts of eqn (3), but also for finite-

N cluster of eqn (14). As an illustration, we select a system
quite close to the type-B one of Fig. 1e–h (triangular-lattice
adsorbate over a square substrate), but with a small mismatch
δ = 0.1% introduced in the adsorbate lattice spacing
jR1j ¼ ð1þ δÞ ffiffiffiffiffiffiffiffi

3=2
p

. Due to the small δ, at relative orientation
θo = 15° the CLV Ω of Fig. 1f turns into a CMV G′ = 2π(2, 2),
with a corresponding critical size N15°

þ ’ 1:8� 104. To study
the relative stability of the consequent nearly-type-B contact,
this orientation has to be compared with all others. Fig. 5a
reports the potential energy U(rc = 0) of eqn (2) as a function of
the misalignment angle θo. The energy profiles of Fig. 5a indi-
cate an evident local energy minimum at θo = 15° for N = 91,
which becomes the global minimum for N ¼ 1141 , N15°

þ.
For sizes N ≲ 100 the global minimum is found for a

different orientation, θo = 0°. This second minimum corres-
ponds to a different (shorter, but worse matched) CMV G″ =
2π(0, 1), with critical size N0°

þ � 40. The moiré patterns
associated with these two CMVs at θo = 0° and θo = 15° are
shown for different sizes in Fig. 5b–g, respectively. To illustrate
the relative stability between these two orientation, Fig. 5h

Fig. 5 Stability of structural directional lubricity against rotation at finite
sizes. (a) The interlocking potential eqn (2) evaluated at fixed rc = 0 for
varying misalignment angle θo for three clusters with size N = 91, N =
1141, and N = 119 401, respectively. The contact consists of a triangular-
lattice adsorbate spaced by jR1j ¼ ð1þ δÞ ffiffiffiffiffiffiffiffi

3=2
p

, with δ = 0.1% on a unit
square-lattice substrate. (b–g) Particle-resolved interlocking energy
(blue-to-white scale) for the three clusters at two different θo, at fixed rc
= 0. (h) The minimum value of U(rc) (minimized by allowing all possible
center-mass translations rc) for fixed alignments θo = 0° (blue dashed)
and θo = 15° (orange solid), as a function of size N. The blue dash-dotted
line marks N0°

þ ¼ 40 and the orange dotted line marks N15°
þ ¼ 17684.
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reports the equilibrium interlocking energy as a function of
size. This alternative θo = 0° orientation is also a nearly-type-B
contact. The direct comparison between the CMV at the two
orientations of Ṽ SðG′ÞWðδΩðG′;NÞÞ and Ṽ SðG′′ÞWðδΩðG′′Þ;NÞ
as a function of size gives a crossover point at N ≃ 100, which
coincides to the crossing point in Fig. 5h, above which θo = 15°
becomes the equilibrium orientation.

At larger sizes, N � N15°
þ, no CMVs retains a significantly

large Fourier component in eqn (3) and, as expected
for a type-C contact, the energy profile as a function of orien-
tation becomes nearly flat, as in the N = 119 401 example of
Fig. 5a.

These observations indicate that directional locking and
directional structural lubricity are not just a hypothetical even-
tuality. On the contrary, they prove that with the condition that
at some orientation θo the contact geometry generates a CLV,
or even just a CMV, sufficiently short to be associated to a size-
able corrugation Fourier component, then precisely this
Fourier component is responsible for the energy stabilization

of this orientation, which the contact will reach spontaneously
if allowed to realign.

Indeed, in the colloidal experimental realizations reported
here in section IV.D and in ref. 16 and 17 where the clusters
are free to reorient, directional locking phenomena and reor-
ientation emerge spontaneously as the result of self-alignment
and not of external manipulation.

VII. Directional structural lubricity in
real-life contacts

By taking advantage of CMVs, we can identify interfaces of real
materials that should exhibit approximate directional struc-
tural lubricity across significant size ranges.

Consider the system depicted in Fig. 6a: for the adsorbate
we take a flake of hexagonal boron nitride (hBN), a layered
material with hexagonal symmetry and spacing a =
0.2512 nm;56 for the substrate we adopt the (001) surface of

Fig. 6 A realistic interface with approximate directional structural lubricity. (a) A monolayer hBN flake (blue dots = B atoms; pink dots = N atoms)
deposited on a VO(001) surface (gray dots = V atoms; red dots = O atoms) substrate. The angular misalignment is θo = 15°. (b) Reciprocal lattices of
the adsorbate (Q, red) and substrate (G, gray), with marked a CMV G’ (orange arrow), a perpendicular reciprocal vector G’’ (green arrow), and the
vector G’’’ (blue arrow) yielding a sizable Fourier component at small flake size. (c) The size dependence of the Fourier components associated to G’
(orange solid line), G’’ (green dotted), and G’’’ (blue dashed). The vertical lines mark the G’ critical sizes N− ≃ 1 and N+ = 779 defined in section V.D.
(d–f ) Maps of the interlocking potential U(rc) in the [−b, b] × [−b, b] square for the three selected flake sizes marked as matching-colored circles in
panel (c); the energy scale is indicated at the right. The dashed gray square delimits the Wigner–Seitz cell of the substrate lattice S.
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VO.57 This surface has square symmetry and spacing b =
0.310 nm.56

When the hBN flake is rotated at θo = 15° as in Fig. 6a, the
interface exhibits a CMV G′ = 2π/b(1, 1) (orange arrow in
Fig. 6b), that fosters an energetically stable configuration. The
two next most significant Fourier components are associated
to G″ = 2π/b(−1, 1) (perpendicular to G′) and G′′′ = 2π/b(0, 1).

To illustrate the effect at hand, here we adopt a radically
simplified energy landscape, obtained by summing the attrac-
tion of each N and B atom in the adsorbate with every sub-
strate atom (regardless of it begin V or O), represented by a
negative Gaussian function V(r), with a straightforward exten-
sion of eqn (1). The resulting interlocking potential depends
on two parameters only: the width σ = 0.1b of the Gaussian
function, and its peak attraction ε, which we keep undefined,
and adopt as the energy scale of this example, thus expressing
all energies in Fig. 6 in terms of ε. Of course, a realistic force
field would imply quantitatively different Fourier components
ṼSðGÞ, but we do not expect the results to change radically,
because the size-dependent weights W(δΩ(G′), N) would be
identical. Note that N indicates the number of lattice cells,
consistently with the rest of the paper. In the hBN flake the
total number of atoms is 2N.

Fig. 6c reports the size dependence of the Fourier ampli-
tude ṼSðG′ÞWðδΩðG′Þ;NÞj j (solid orange line), plus the analo-
gous quantity for G″ (dotted green) and G′′′ (dahsed blue). The
G′ component dominates across the size range from N− ≃ 1 up
to a critical size N+ = 779. As a result, at small size, multiple
substrate G vectors contribute significantly to the interlocking
potential, resulting in a relatively irregular landscape domi-
nated by pronounced energy corridors modulated by a second-

ary weaker corrugation, as exemplified in Fig. 6d for N = 9.
This secondary corrugation associated mainly to G″ and G′′′
decays rapidly with increasing size, see Fig. 6c. Across the size
range N− ≪ N < N+ spanning over two orders of magnitude in
area, the ±G′ Fourier components remain effectively the domi-
nant contribution to the interlocking potential, with the result
that this interface exhibits approximate directional structural
lubricity as exemplified in Fig. 6e for N = 729. For sizes larger
than N+, the energy landscape flattens out and the infinite-size
limit of ordinary (kind-C) structural lubricity is approached, as
exemplified in Fig. 6f for N = 14 641.

The hBN/VO(001) interface is just an example where we
predict directional structural lubricity to arise. Another inter-
face where it could be observed is WSe2 on CuF(001), as dis-
cussed in ESI section 1,† and others can be discovered by
going through existing materials databases.56,58–60

In addition, the geometric conditions for directional struc-
tural lubricity can be achieved by means of strain engineering,
a method that has been recently used to tailor frictional
properties.61–63 For example, the well-studied structurally
lubric hBN/graphite contact can be modified by a uni-axial
strain applied to the graphite substrate in the armchair direc-
tion, as shown in Fig. 7a. This deformation, at εarmchair ≃
1.8%, i.e. within experimental feasibility,64 would generate the
geometrical conditions for a type-B directional structural lubri-
city along the zig-zag direction as discussed in Methods
section XIII. On such a strained graphene surface, we evaluate
the static-friction unpinning threshold for aligned hBN flakes
of different sizes, based on a realistic force field.65–67

Fig. 7f reports our prediction for this static-friction force in
two orthogonal directions: perpendicular to the valleys of the

Fig. 7 Directional structural lubricity via strain engineering. (a) An aligned hBN flake on a graphene substrate strained by εarmchair ≃ 1.8% in the arm-
chair = x̂ direction. The aspect x : y ratio of the hBN flake is approximately 1 : 2. The wavelength of the linear moiré pattern is highlighted with a black
arrow. (b–e) Corrugation potential U(rc) for hBN flakes of size (b) 6.5 nm × 12.7 nm (N = 170), (c) 13 nm × 25.5 nm (N = 2760), (d) 39 nm × 76.5 nm (N
= 11 120), (e) PBC in the region [0, 0.45 nm] × [0, 0.25 nm]. Like in Fig. 6, N is the number of lattice cells, so that the flake consists of 2N atoms in
total. (f ) Static friction in the armchair lattice-matched direction (red empty symbols) and zig-zag (blue filled symbols), respectively parallel and per-
pendicular to the CLV Ω. The dashed (dotted) line indicates the scaling in the direction parallel (perpendicular) to the energy corridors, as indicated
in panel (e). The vertical dash-dotted black line marks the critical size Nc of the largest non-matching component G’.
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interlocking potential, i.e. in the strained armchair direction,
and parallel to them, i.e. in the unstrained zig-zag direction, as
depicted in Fig. 7e. Like in the colloid experiment of Fig. 4, the
numerical results agree with the expectation for a type-B
contact: in the directions perpendicular to the valleys Fs ∝ N0,
while parallel to the valleys Fs ∝ N−1/2.

To probe the effect of elasticity, we allow for relaxation of
the atomic positions, both of the hBN cluster and of the graph-
ite substrate, while controlling the respective center-of-mass
positions. We adopt periodic boundary conditions (PBC),
which unavoidably introduce a secondary, much weaker strain
on the zig-zag edges. This small strain leads to a commensu-
rate (type-A) configuration, that fits in a periodic cell. This
forced commensuration is responsible for the tiny, but
nonzero friction in the zig-zag direction reported in the right-
most point in Fig. 7f.

As detailed in the Methods section XIII, at each center-
mass position rc, we perform a systematic evaluation of the
total interlocking energy and lateral force after a full atomic
relaxation. The friction force parallel to the valleys after relax-
ation is nearly a factor three larger than when they are evalu-
ated for rigid layers as reported in Table 2. Despite this
reduction, these results indicate that elastic deformations pre-
serve the substantial friction anisotropy.

The adopted value of strain leads to an exact type-B contact.
Small deviations from that value would lead to a type-C
contact that, for not-too-large hBN clusters, would lead to an
approximate type-B behavior, as discussed in section V.D.

VIII. Discussion

In this work we formulate a precise classification of the match-
ing/mismatching conditions of 2D crystalline contacts. In
addition to the well-known lattice-matching condition and to
the structurally lubric fully mismatched condition, we discover
an intriguing intermediate condition, characterized by vanish-
ing static friction in just one special direction. We extend this
rigorous theory from the rather abstract domain of infinite lat-
tices to the approximate but experimentally more relevant situ-
ation of finite-size contacts, where we provide estimations of
the range of validity of the resulting frictional regimes.

This theory, summarized in eqn (7) and (8), shows how
both directional locking and structural lubricity can occur in

non-trivial preferential directions, i.e. directions that generally
do not coincide with those of highest symmetry for either the
substrate or the adsorbate. This is possible only when the
dominant contributions to the interlocking potential orig-
inates from higher Fourier components Ω of the corrugation
potential. Non-trivial directions are consequently absent for
purely sinusoidal potentials, as was noted in ref. 18.
Furthermore, the existence of directional structural lubricity is
possible only when adsorbate and substrate have either low
symmetries or different symmetries (see Methods X). This
excludes the commonly studied cases of homocontacts, and
even heterocontacts of triangular-on-triangular and square-on-
square lattices, which perhaps explains why directional struc-
tural lubricity has gone unnoticed so far. Regarding this novel
frictional regime, we provide concrete examples of its realiz-
ation, including an experiment based on colloidal particles
driven across a patterned surface.

Most importantly, we investigate the angular energetics of
the problem, and show that the same contact orientations that
support directional locking and directional structural lubricity
are the most energetically stable. Hence the well-known spon-
taneous decay of superlubricity in homocontacts54 does not
apply to directional structural lubricity.

Precisely this intrinsic stability could suggest applications
of directional structural lubricity in contexts where a dramatic
friction anisotropy is required. The natural field of application
involves nanoparticles/nanocontacts, whose small size can
accommodate the not-quite-perfect CMVs that one is likely to
encounter in real life. By tuning temperature and taking
advantage of the different thermal expansion of the contacting
materials, or by applying strain to one of the crystals, as dis-
cussed in section VII, precise CLVs can be achieved: this con-
dition allows one to realize perfect directional structural lubri-
city even for a macroscopically large contact, as long as elastic
effects are negligible.

The present investigation does not include elasticity. For
rigid materials, the effect of the elastic response should
remain small and even negligible as long as the contact size
remains below a critical value. Such critical sizes range from N
≃ 105 for the colloidal clusters of Fig. 4, to N ≃ 1012 corres-
ponding to linear dimensions in the millimeter region for
hBN/strained graphene (see Methods, section XIII) and MoS2/
graphene heterostructures.53,68 For softer materials, which
could include colloids27,34,69 and dusty plasma,47 or real
material interfaces with larger sizes, elasticity will acquire an
increasingly important role, usually leading to higher
friction.24,70 For type-C contacts, the Aubry-transition
paradigm21,27,32 leads us to predict that structural lubricity
gives way to a high-friction regime as soon as the strength of
the adsorbate–substrate interaction starts to prevail over the
adsorbate and substrate rigidity. For soft type-B and near-type-
B contacts, we expect a regular 1D Aubry-type physics,
although other effects related to Novaco-McTague distortions71

might play a role too.27,72,73 These questions however go
beyond the scope of this paper, and as such their investigation
is left to future work.

Table 2 Static friction components for a hBN infinite monolayer (simu-
lated with PBC) dragged along strained graphite. The first column
reports the static friction force per cell for a rigid layer (rightmost points
in Fig. 7f) and the second column the same quantity evaluated for the
flexible case

Force component Rigid [nN] Flexible [nN]

Farmchair
s 1.90 × 10–2 2.20 × 10–2

Fzig�zag
s 5.46 × 10–5 1.58 × 10–4

Farmchair
s /Fzig�zag

s 347 140
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IX. Materials and methods
A. Properties of the discrete-coverage dual and real-space
lattices

In the discrete-coverage condition, summarized in row A of
Table 1, the following two statements hold: (i) for all Qj [ Q,
their components Qjμ=ð2πÞ [ Q (μ = x, y), i.e. they are rational
numbers; (ii) likewise, for all Rj [ R, their components
Rjμ [ Q, rational numbers too.

The demonstration of (i) goes as follows: we can express
any lattice vector in Q as a linear combination of the primitive
lattice vector Qa, Qb, with integer coefficients. In particular, for
the lattice vectors Q1, Q2 whose components Qiα/(2π) are inte-
gers (line A of Table 1),

Q1 ¼ n1Qa þ n2Qb ð20Þ

Q2 ¼ m1Qa þm2Qb; ð21Þ
with n1, n2, m1, m2 [ Z The relations in eqn (20) and (21) can
be inverted to express the primitive vectors in term of Q1, Q2:

Qa ¼
m2Q1 � n2Q2

n1m2 � n2m1
ð22Þ

Qb ¼ �m1Q1 þ n1Q2

n1m2 � n2m1
: ð23Þ

Similar relations hold for these vectors divided by 2π:

Qa

2π
¼

m2
Q1

2π
� n2

Q2

2π
n1m2 � n2m1

ð24Þ

Qb

2π
¼

�m1
Q1

2π
þ n1

Q2

2π
n1m2 � n2m1

: ð25Þ

Since at the right hand side of eqn (24) and (25) all vectors
have integer components, the primitive vectors Qa/(2π), Qb/(2π)
have rational components. As an arbitrary lattice vector Qj [ Q
can be written as an integer-coefficient combination of these
primitive vectors, Qj = l1Qa + l2Qb (with l1; l2 [ Z), we conclude
that all lattice points in Q divided by 2π have rational
components.

The demonstration of the real-lattice statement (ii) goes as
follows: given the primitive vectors Qa, Qb ofQ, then the primitive
vectors ofR can be obtained through the following formulas:50

Ra ¼ 2π
R90 � Qb

Qa � R90 � Qb
¼ R90 � Qb

2π
Qa
2π � R90 � Qb

2π

ð26Þ

Rb ¼ 2π
R90 � Qa

Qb � R90 � Qa
¼ R90 � Qa

2π
Qa
2π � R90 � Qb

2π

; ð27Þ

where R90 represents the 2 × 2 90° rotation matrix. The right-
most expressions involve only rational quantities, which proves
that Ra and Rb have rational components. As a consequence,
all vectors in R have rational components.

Finally, by multiplying Ra and Rb by the least common
denominator of their respective (rational) components, one

readily obtains two independent vectors in R characterized by
all integer components.

X. Necessary condition for line
coverage

To allow for the possibility of line coverage (type B), the two lat-
tices must not share a rotational symmetry of order n > 2: in
practice they cannot be both square or triangular lattices. To
prove this, consider two such lattices sharing a rotational sym-
metry by an angle α of order n > 2. First of all, if they do not
have any nonzero CLV in reciprocal space then they are in the
dense coverage case (type C). Let us then assume that they do
have a nonzero CLV Ω*. As a consequence of the common sym-
metry, also the rotated vector Rα(Ω*) is a CLV (where Rα rep-
resents a rotation by α). Moreover, if the symmetry order is
larger than 2, then Ω* and Rα(Ω*) are both CLVs and indepen-
dent, which leads by definition to the case of discrete coverage,
type A. We conclude that to have line coverage (type B) either
the two lattices must have different symmetries, or share the
same low-order symmetry.

XI. Weight function structure factor

When, as is usually the case, R1
CLV and R2

CLV are not primitive
vectors of R, they define a supercell, namely the unit cell of
the moiré pattern formed by R and S. This supercell contains
K vectors Rk, such that any lattice-translation vector Rj defining
the cluster can now be identified as Rj = j1R1

CLV + j2R2
CLV + Rk,

with j1; j2 ¼ � ffiffiffiffiffi
N′

p � 1
� �

=2; . . . ;
ffiffiffiffiffi
N′

p þ 1
� �

, k = 1, …, K, and we
assume that

ffiffiffiffiffi
N′

p
is an odd integer such that N = N′K.

We then express the weight function as

WðδΩ;NÞ ¼ 1
N

X
j1 ;j2;k

expðiδΩ � ðj1R1
CLV þ j2R1

CLV þ RkÞÞ

¼ 1
N
sinð ffiffiffiffiffi

N′
p

δΩ � R1
CLV=2Þ

sinðδΩ � R1
CLV=2Þ �

sinð ffiffiffiffiffi
N′

p
δΩ � R2

CLV=2Þ
sinðδΩ � R2

CLV=2Þ SðδΩÞ:

ð28Þ

here we have introduced the supercell “structure factor”

SðδΩÞ ¼
XK
k¼1

expðiδΩ � RkÞ: ð29Þ

The main observation here is that since Ri
CLV are CLV

belonging to both R and S, this structure factor vanishes
exactly for all nonzero δΩ’s. By definition δΩ·Ri

CLV = G·Ri
CLV −

Q̄·Ri
CLV = 2πq with q [ Z. Hence, the sinc terms in eqn (28) are

equal to 1 and the weights W associated with any substrate
vector G are size-independent. But only CLV contributions can
be size independent and survive for infinite monolayer. Thus
the non-CLV contribution must vanish, hence S(δΩ) = 0.
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XII. Experimental details

The data shown in section V.D are obtained using the
experimental apparatus described in ref. 16 and 17, where
monolayers of triangularly packed colloidal crystalline clus-
ters of up to hundreds of particles in size are firstly
created and then driven across a periodic (square lattice)
potential under an applied force. To form the colloidal
clusters, we inject a colloidal suspension into a sample cell
of 20 × 30 × 0.3 mm3 in size, where the 0.3 mm is the
sample thickness and the 20 × 30 mm2 is the sample area.
The colloidal suspension contains a dilute amount (∼107

mL−1) of colloidal particles (Dynabeads M450 with a dia-
meter of a = 4.45 μm) in a water-based solution that con-
tains a small amount of polyacrylamide (0.02% by weight)
and sodium dodecyl sulfate (50% critical micelle concen-
tration). The polyacrylamide induces a bridging flocculation
effect which causes the colloidal particles to attract strongly
when they get close to each other. Due to gravity, the col-
loidal particles (buoyant weight mg = 286 fN) sediment on
the bottom surface of the sample cell. Under Brownian
motion, the colloidal particles on the sample surface meet
one another and aggregate to form random-shaped small
clusters up to several tens of particles in size. To facilitate
the formation of larger clusters, we tilt the sample so that
the small clusters can move quickly on the sample surface
and grow larger via accretion. This process also clears the
sample surface so that during future sliding the clusters
will hardly bump into each other.

The sample surface contains portions of periodically cor-
rugated regions created by photolithography. To create the
periodic structures, a thin layer (thickness 100 nm) of
photoresist (SU8 2000) was firstly coated to the sample
surface and then exposed by UV light (wavelength 365 nm)
under a photomask that contains the predefined periodic
patterns. The surface is then washed in SU8 developers,
after which the unexposed part of the thin film dissolve
away, forming a periodically corrugated structure on the
surface. This creates a periodic potential for the colloidal
particles with a lattice spacing b = 5 μm and potential
barrier 25.8 kBTroom.

Due to the orientational locking effect, during sliding the
clusters will become orientationally locked to an angle θo =
−3.4° relative to the periodic surface’s lattice direction. At this
angle a CMV appears at G′ ≈ Q1 − 2Q2 which leads to a nearly-
type-B contact. This creates a low-energy corridor along the
25.6° direction on the interlocking potential energy landscape
of the clusters.

To apply a driving force F, we tilt the sample in such a way
that the in-plane component of the gravitational force is either
parallel to the low energy corridor or perpendicular to it. To
determine the static friction force component Fs reported in
Fig. 4, we firstly increase F in the 80–100 fN region to ensure
that the cluster can move along or perpendicular to the low-
energy corridor. We then gradually lower F until the cluster is
no longer moving: this is the measured Fs.

XIII. Simulating directional structural
lubricity of hBN on strained graphite

We simulate a realistic model for the hBN/strained graphene
interaction, consisting of a finite-size rectangular hBN slider in
contact with a graphene substrate to which PBC are applied
along the armchair (x) and zig-zag (y) directions, see Fig. 7a.
To obtain a contact with a CLV Ω = (4.625, 0) nm−1 compatible
with directional structural lubricity along the zigzag direction,
we strain the graphene substrate (with original bond length
bgraphene=1.42039 Å) along the armchair direction by εarmchair =
(ahBN/bgraphene − 1) = 1.81799% to match the hBN lattice (bond
length a

hBN
=1.44621 Å), while along the zig-zag direction the

graphene substrate is shrunk by εzig-zag = −0.34542% to
account for the Poisson ratio ν = 0.19.56 The strained graphene
has armchair-directed bonds of length 1.44621 Å, zig-zag
bonds of length 1.42323 Å, and the angle between them
amounts to 120.5357°. The negative stress required for this
elongation is estimated to be 8 GPa, assuming a Young
modulus of graphene of 1 TPa. This is within the experi-
mentally achievable strain of graphene.64 For all simulations
of finite-size hBN clusters, both hBN and graphene are kept
rigid. The hBN-graphene interaction is described by the accu-
rate registry-dependent inter-layer potential (ILP).74 In this
system the reciprocal vector yielding the next most significant
Fourier component of the interlocking potential is G′ = (2.312,
4.076) nm−1.

We also simulate the infinite-size layer, by applying PBC to
both hBN and graphene in a common supercell of size
5.64 nm × 11.5 nm (N = 1196), that imposes a minimal
residual strain of 0.00294% to hBN in the zig-zag direction.

The ratio of friction between the pinned armchair direction
and the directionally structurally lubric direction is rather
large, as expected. Beside simulating rigid layers, in order to
probe the effect of elastic deformation, in this PBC model we
perform additional flexible simulations, with z-direction
springs tethered to each slider and substrate atom to mimic
the elasticity of the bulk materials.75 The average external load
is kept to zero during the sliding. When modeling the elastic
infinite-size contact, both the slider (hBN) and the substrate
(graphene) are fully flexible and periodically repeated. The
intralayer interaction of hBN and graphene are described by
shifted-Tersoff76–78 and REBO65 force fields, respectively. A
standard (quasi-static) simulation protocol79,80 is adopted to
compute the interlocking potential energy U(rc) while chan-
ging the position rc of the slider relative to the graphene sub-
strate, whose center-of-mass (COM) is kept fixed throughout
the simulation. The COM rc of the slider is scanned on a 0.1 Å
grid over x and y. At fixed COM, the structure is relaxed until
the force experienced by each atom decreases below 10–5 eV
Å−1. All calculations of the interface potential energy for the
rigid layers, and its relaxation in the elastic case are conducted
by means of the open-source LAMMPS code.81

After obtaining the energy field U(rc), we estimate the static
friction Fs along the expanded armchair ðûarmchair ¼ x̂Þ and
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weakly shrunk zig-zag ðûzig�zag ¼ ŷÞ direction by taking the
maximum value of Farmchair ¼ �ûarmchair � ∇U and Fzig‐zag ¼
�ûzig‐zag � ∇U between two successive minima, as in section V.
C and Fig. 3g. Table 2 compares the static friction obtained
taking elastic displacement into account with that obtained
for the rigid layer.

The overall anisotropy and thus the armchair/zigzag friction
ratio, while still very large, is reduced by elasticity. Note that
the finite size of the supercell of PBC calculations effectively
implements a small-wavevector cutoff, that forbids all long-
wavelength deformation. The size at which long-wavelength
elastic deformations become important can be estimated by
the critical length defined by Sharp et al.:23

λ ¼ Gd=τ; ð30Þ
where G is the in-plane shear modulus of the material, d is
lattice constant of the substrate, and τ is the interface
shear strength. For the case of hBN on graphite, we obtain a
critical length λ = 0.662 mm, using the following values
from the literature: d = 0.246 nm,65 τ = 0.12 MPa,14 G =
2GgrapheneGhBN/(Ggraphene + GhBN),

82 with Ggraphene = 372 GPa
and and GhBN = 285 GPa.56
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