Issue 39, 2023

Arrays of graphene-quantum dots-supported DNA oligonucleotides as self-indicating porphyrin carriers

Abstract

The functionalization of deoxyribonucleic acid (DNA) with nanomaterials is a promising strategy to optimize the loading and efficiency of drugs in targeted clinical therapies. Herein we report a novel approach to construct arrays comprising blue- (B) or aqua green- (AG) emitting ethylenediamine-modified graphene quantum dots (GQDs) and DNA oligonucleotides that are able to fold into different structures, namely G-quadruplexes (G4s). The obtained results indicate that GQDs partially modulate the conformation of oligonucleotides, resulting in GQDs-DNA bioconjugates with higher affinity to carry 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP), in comparison to non-modified DNA sequences. TMPyP shows a higher affinity, expressed by a lower dissociation constant (KD), to GQDs-B-G4-1 (0.229 μM) and to GQDs-AG-G4-1 (KD of 0.326 μM) in comparison with non-modified G4-1 (KD of 0.440 μM). The carrier systems with the highest affinity to TMPyP correspond to GQDs-AG with telomeric unimolecular G4 sequence (GQDs-AG-G4-2, KD of 0.111 μM) and GQDs-AG with a non-G4 sequence (GQDs-AG-non-G4, KD of 0.110 μM), followed by their analogues with GQDs-B. While uncovering terra incognita, it is anticipated that GQDs-DNA arrays may be potential photoluminescent nanovehicles to carry other cationic anticancer drugs and allow more targeted therapies.

Graphical abstract: Arrays of graphene-quantum dots-supported DNA oligonucleotides as self-indicating porphyrin carriers

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2023
Accepted
07 Aug 2023
First published
09 Aug 2023

New J. Chem., 2023,47, 18130-18142

Arrays of graphene-quantum dots-supported DNA oligonucleotides as self-indicating porphyrin carriers

A. R. Monteiro, C. I. V. Ramos, S. Fateixa, M. G.P.M.S. Neves and T. Trindade, New J. Chem., 2023, 47, 18130 DOI: 10.1039/D3NJ03280A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements