Issue 38, 2023

Three novel indole-bearing porous organic polymers for efficient iodine capture from both vapor and organic phases

Abstract

Herein, a mild and convenient strategy for the preparation of p-di(bis-indolyl-methane)benzene (Ph-TIn) using iodine as a catalyst was proposed. On this basis, three novel indole-bearing porous organic polymers (InPOPs) with different morphologies were successfully synthesized via Friedel–Crafts alkylation and oxidative coupling reactions. The obtained InPOPs (InPOP-1, InPOP-2 and InPOP-3) were applied for iodine adsorption in the cases of both an organic medium and vapor phase. Among them, InPOP-1 exhibits the best adsorption performance in iodine/cyclohexane solution. The thermodynamic and kinetic analysis reveals that the adsorption behavior of InPOP-1 is represented by Freundlich and pseudo-second-order models, respectively. Besides, the adsorption rate is influenced by both liquid-film diffusion and intra-particle diffusion. In addition, the results of thermodynamic calculations indicate that the adsorption of iodine on InPOP-1 is a spontaneous, endothermic and entropy-increasing process. However, InPOP-3 displays the highest capacity of removing iodine vapor. Furthermore, the recycling evaluations and spectral evidence of I2@InPOP-1 and I2@InPOP-3 demonstrate that the iodine adsorption process is influenced by both physisorption and chemisorption, whether in an organic medium or vapor phase. Most importantly, we draw a conclusion that both porosity and morphology of InPOPs significantly influence the behavior of iodine adsorption in organic media, whereas the larger average pore size is favorable to the adsorption of iodine in the vapor phase. This study will serve as a guide for future inventions of porous organic polymers in the field of radioactive iodine capture.

Graphical abstract: Three novel indole-bearing porous organic polymers for efficient iodine capture from both vapor and organic phases

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2023
Accepted
02 Sep 2023
First published
20 Sep 2023

New J. Chem., 2023,47, 18070-18085

Three novel indole-bearing porous organic polymers for efficient iodine capture from both vapor and organic phases

J. Yu, L. Song, Y. Wang, H. Li, J. Liu, M. Wu, Y. Feng and J. Mi, New J. Chem., 2023, 47, 18070 DOI: 10.1039/D3NJ03233G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements