Issue 3, 2023

Reaction-induced macropore formation enabling commodity polymer derived carbons for CO2 capture

Abstract

CO2 capture from industrial point source waste streams represents an important need for achieving the global goal of carbon-neutrality. Compared with conventional liquid sorbents, solid sorbents can exhibit several distinct advantages, including enhanced lifetime and reduced energy consumption for sorbent regeneration. Considering that reducing CO2 emission is a great challenge, reaching approximately 37 billion metric tons just in 2021, ideal sorbent solutions should not only exhibit a high capture performance but also enable large scale manufacturing using low-cost precursors and simple processes. In this work, we demonstrate the use of a commodity polymer, polystyrene-block-polyisoprene-block-polystyrene (SIS), as the starting material for preparing hierarchically porous, sulfur-doped carbons for CO2 capture. Particularly, the sulfonation-crosslinking reaction enables the formation of macropores in the polymer framework due to the release of gaseous byproducts. After carbonization and activation, the highly porous structure of SIS-derived carbons is successfully retained, while their surface area can reach up to 905 m2 g−1. These porous carbon sorbents exhibit excellent CO2 uptake performance, reaching sorption capacities of 3.8 mmol g−1 at 25 °C and 6.0 mmol g−1 at 0 °C, as well as a high selectivity up to 43 : 1 against N2 gas under ambient conditions. Overall, our work provides an industrially viable method for “template-free” fabrication of porous carbons from commodity polyolefin-based materials, which can be employed for reducing CO2 emission from industrial plants/sectors.

Graphical abstract: Reaction-induced macropore formation enabling commodity polymer derived carbons for CO2 capture

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2022
Accepted
05 Dec 2022
First published
05 Dec 2022

New J. Chem., 2023,47, 1318-1327

Author version available

Reaction-induced macropore formation enabling commodity polymer derived carbons for CO2 capture

A. Guillen Obando, M. Robertson, P. Smith, S. Jha, D. L. Patton and Z. Qiang, New J. Chem., 2023, 47, 1318 DOI: 10.1039/D2NJ05434E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements